\
JAKARTA EE

Jakarta® Enterprise Beans, Optional
Features

Jakarta Enterprise Beans Team, https://projects.eclipse.org/projects/ee4j.ejb

4.0, November 05, 2020: Final

Table of Contents

Copyright
Eclipse Foundation Specification License
Disclaimers
1. Introduction
1.1. Acknowledgements
1.2. Organization of the Specification Documents
1.3. Document Conventions
2. Overview
3. Client View of an Entity Bean
3.1. Overview
3.2. Remote Clients
3.3. Local Clients
3.4. Choosing Between a Local or Remote Client View
3.5. Enterprise Beans Container
3.5.1. Locating an Entity Bean’s Home Interface
3.5.2. What a Container Provides
3.6. Entity Bean’s Remote Home Interface
3.6.1. Create Methods
3.6.2. Finder Methods
3.6.3. Remove Methods
3.6.4. Home Methods
3.7. Entity Bean’s Local Home Interface
3.7.1. Create Methods
3.7.2. Finder Methods
3.7.3. Remove Methods
3.7.4. Home Methods
3.8. Entity Object’s Life Cycle
3.8.1. References to Entity Object Remote Interfaces
3.8.2. References to Entity Object Local Interfaces
3.8.3. References to Entity Object and Stateful Session Bean Instance Passivation and
Conversational State
3.9. Primary Key and Object Identity
3.10. Entity Bean’s Remote Interface
3.11. Entity Bean’s Local Interface
3.12. Entity Bean’s Handle
3.13. Entity Home Handles

© © © 00 00 I J O = b= = NN

g S T Y
© O 9 9 o0 o U1 U R W W N R O

20
20
21
22
23
24

3.14. Type Narrowing of Object References
4. Enterprise Beans 2.1 Entity Bean Component Contract for Container-Managed Persistence

4.1. Overview

4.2. Container-Managed Entity Persistence and Data Independence

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

4.3.1. The Entity Bean Provider’s Programming Contract
4.3.2. The Entity Bean Provider’s View of Persistent Relationships
4.3.3. Dependent Value Classes
4.3.4. Remove Protocols
4.3.4.1. Remove Methods
4.3.4.2. Cascade-delete
4.3.5. Identity of Entity Objects
4.3.6. Semantics of Assignment for Relationships
4.3.6.1. Use of the java.util.Collection API to Update Relationships
4.3.6.2. Use of Set Accessor Methods to Update Relationships
4.3.7. Assignment Rules for Relationships
4.3.7.1. One-to-one Bidirectional Relationships
4.3.7.2. One-to-one Unidirectional Relationships
4.3.7.3. One-to-many Bidirectional Relationships
4.3.7.4. One-to-many Unidirectional Relationships
4.3.7.5. Many-to-one Unidirectional Relationships
4.3.7.6. Many-to-many Bidirectional Relationships
4.3.7.7. Many-to-many Unidirectional Relationships
4.3.8. Collections Managed by the Container
4.3.9. Non-persistent State
4.3.10. The Relationship Between the Internal View and the Client View
4.3.10.1. Restrictions on Remote Interfaces
4.3.11. Mapping Data to a Persistent Store
4.3.12. Example
4.3.13. The Bean Provider’s View of the Deployment Descriptor

4.4. The Entity Bean Component Contract

4.4.1. Runtime Execution Model of Entity Beans
4.4.2. Container Responsibilities

4.4.2.1. Container-Managed Fields

4.4.2.2. Container-Managed Relationships

4.5. Instance Life Cycle Contract Between the Bean and the Container

4.5.1. Instance Life Cycle

4.5.2. Bean Provider’s Entity Bean Instance’s View

24
26
26
26
28
29
31
31
32
32
33
33
34
34
36
37
38
39
40
44
48
50
55
59
60
60
60
61
61
64
67
67
69
69
69
70
70
73

4.5.3. Container’s View 78

4.5.4. Read-only Entity Beans 82
4.5.5. The EntityContext Interface 83
4.5.6. Operations Allowed in the Methods of the Entity Bean Class 83
4.5.7. Finder Methods 86
4.5.7.1. Single-Object Finder Methods 87
4.5.7.2. Multi-Object Finder Methods 88
4.5.8. Select Methods 88
4.5.8.1. Single-Object Select Methods 89
4.5.8.2. Multi-Object Select Methods 90
4.5.9. Timer Notifications 90
4.5.10. Standard Application Exceptions for Entities 90
4.5.10.1. CreateException 91
4.5.10.2. DuplicateKeyException 91
4.5.10.3. FinderException 91
4.5.10.4. ObjectNotFoundException 92
4.5.10.5. RemoveException 92
4.5.11. Commit Options 92
4.5.12. Concurrent Access from Multiple Transactions 94
4.5.13. Non-reentrant and Re-entrant Instances 95
4.6. Responsibilities of the Enterprise Bean Provider 96
4.6.1. Classes and Interfaces 96
4.6.2. Enterprise Bean Class 96
4.6.3. Dependent Value Classes 97
4.6.4. ejbCreate<METHOD> Methods 97
4.6.5. ejbPostCreate<METHOD> Methods 98
4.6.6. ejpHome<METHOD> Methods 98
4.6.7. ejbSelect<METHOD> Methods 99
4.6.8. Business Methods 99
4.6.9. Entity Bean’s Remote Interface 100
4.6.10. Entity Bean’s Remote Home Interface 100
4.6.11. Entity Bean’s Local Interface 101
4.6.12. Entity Bean’s Local Home Interface 102
4.6.13. Entity Bean’s Primary Key Class 103
4.6.14. Entity Bean’s Deployment Descriptor 103
4.7. The Responsibilities of the Container Provider 103
4.7.1. Generation of Implementation Classes 103

4.7.2. Enterprise Bean Class 104

4.7.3. ejpFind<METHOD> Methods 104

4.7.4. ejbSelect<METHOD> Methods 105
4.7.5. Entity EJBHome Class 105
4.7.6. Entity EJBODbject Class 106
4.7.7. Entity EJBLocalHome Class 106
4.7.8. Entity EJBLocalObject Class 107
4.7.9. Handle Class 107
4.7.10. Home Handle Class 107
4.7.11. Metadata Class 107
4.7.12. Instance’s Re-entrance 107
4.7.13. Transaction Scoping, Security, Exceptions 108
4.7.14. Implementation of Object References 108
4.7.15. EntityContext 108
4.8. Primary Keys 108
4.8.1. Primary Key That Maps to a Single Field in the Entity Bean Class 109
4.8.2. Primary Key That Maps to Multiple Fields in the Entity Bean Class 109
4.8.3. Special Case: Unknown Primary Key Class 109

5. Enterprise Beans QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods 111
5.1. Overview 111
5.2. Enterprise Beans QL Definition 112
5.2.1. Abstract Schema Types and Query Domains 112
5.2.2. Query Methods 113
5.2.3. Naming 114
5.2.4. Examples 114
5.2.5. The FROM Clause and Navigational Declarations 116
5.2.5.1. Identifiers 116
5.2.5.2. Identification Variables 117
5.2.5.3. Range Variable Declarations 118
5.2.5.4. Collection Member Declarations 118
5.2.5.5. Example 119
5.2.5.6. Path Expressions 119
5.2.6. WHERE Clause and Conditional Expressions 120
5.2.6.1. Literals 121
5.2.6.2. Identification Variables 121
5.2.6.3. Path Expressions 121
5.2.6.4. Input Parameters 121
5.2.6.5. Conditional Expression Composition 122

5.2.6.6. Operators and Operator Precedence 122

5.2.6.7. Between Expressions 123

5.2.6.8. In Expressions 123
5.2.6.9. Like Expressions 124
5.2.6.10. Null Comparison Expressions 124
5.2.6.11. Empty Collection Comparison Expressions 125
5.2.6.12. Collection Member Expressions 125
5.2.6.13. Functional Expressions 126
5.2.7. SELECT Clause 126
5.2.7.1. Null Values in the Query Result 127
5.2.7.2. Aggregate Functions in the SELECT Clause 128
5.2.7.3. Examples 128
5.2.8. ORDER BY Clause 129
5.2.9. Return Value Types 131
5.2.10. Null Values 132
5.2.11. Equality and Comparison Semantics 133
5.2.12. Restrictions 133
5.3. Examples 134
5.3.1. Simple Queries 134
5.3.2. Queries with Relationships 134
5.3.3. Queries Using Input Parameters 136
5.3.4. Queries for Select Methods 136
5.3.5. Enterprise Beans QL and SQL 137
5.4. Enterprise Beans QL BNF 138
6. Enterprise Beans 2.1 Entity Bean Component Contract for Bean-Managed Persistence 141
6.1. Overview of Bean-Managed Entity Persistence 141
6.1.1. Entity Bean Provider’s View of Persistence 142
6.1.2. Runtime Execution Model 143
6.1.3. Instance Life Cycle 144
6.1.4. The Entity Bean Component Contract 146
6.1.4.1. Entity Bean Instance’s View 146
6.1.4.2. Container’s View 150
6.1.5. Read-only Entity Beans 153
6.1.6. The EntityContext Interface 154
6.1.7. Operations Allowed in the Methods of the Entity Bean Class 154
6.1.8. Caching of Entity State and the ejbLoad and ejbStore Methods 157
6.1.8.1. ejbLoad and ejbStore with the NotSupported Transaction Attribute 158
6.1.9. Finder Method Return Type 159

6.1.9.1. Single-Object Finder 159

6.1.9.2. Multi-Object Finders
6.1.10. Timer Notifications
6.1.11. Standard Application Exceptions for Entities
6.1.11.1. CreateException
6.1.11.2. DuplicateKeyException
6.1.11.3. FinderException
6.1.11.4. ObjectNotFoundException
6.1.11.5. RemoveException
6.1.12. Commit Options
6.1.13. Concurrent Access from Multiple Transactions
6.1.14. Non-reentrant and Re-entrant Instances
6.2. Responsibilities of the Enterprise Bean Provider
6.2.1. Classes and Interfaces
6.2.2. Enterprise Bean Class
6.2.3. ejbCreate<METHOD> Methods
6.2.4. ejpPostCreate<METHOD> Methods
6.2.5. ejbFind Methods
6.2.6. ejpHome<METHOD> Methods
6.2.7. Business Methods
6.2.8. Entity Bean’s Remote Interface
6.2.9. Entity Bean’s Remote Home Interface
6.2.10. Entity Bean’s Local Interface
6.2.11. Entity Bean’s Local Home Interface
6.2.12. Entity Bean’s Primary Key Class
6.3. The Responsibilities of the Container Provider
6.3.1. Generation of Implementation Classes
6.3.2. Entity EJBHome Class
6.3.3. Entity EJBObject Class
6.3.4. Entity EJBLocalHome Class
6.3.5. Entity EJBLocalObject Class
6.3.6. Handle Class
6.3.7. Home Handle Class
6.3.8. Metadata Class
6.3.9. Instance’s Re-entrance
6.3.10. Transaction Scoping, Security, Exceptions
6.3.11. Implementation of Object References
6.3.12. EntityContext

7. Enterprise Beans 1.1 Entity Bean Component Contract for Container-Managed Persistence

160
161
162
162
162
163
163
163
163
164
165
166
166
167
167
168
169
169
170
170
171
172
172
174
174
174
174
175
175
176
176
176
176
177
177
177
177
179

7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence
7.1.1. Container-Managed Fields
7.1.2. ejbCreate, ejbPostCreate
7.1.3. ejpbRemove
7.1.4. ejbLoad
7.1.5. ejbStore
7.1.6. Finder Hethods
7.1.7. Home Methods
7.1.8. Create Methods
7.1.9. Primary Key Type
7.1.9.1. Primary Key that Maps to a Single Field in the Entity Bean Class
7.1.9.2. Primary Key that Maps to Multiple Fields in the Entity Bean Class
7.1.9.3. Special Case: Unknown Primary Key Class
8. Support for Transactions
8.1. Overview
8.2. Bean Provider’s Responsibilities
8.2.1. Bean-Managed Versus Container-Managed Transaction Demarcation
8.2.2. Isolation Levels
8.2.3. Specification of the Transaction Attributes for a Bean’s Methods
8.3. Container Provider Responsibilities
8.3.1. Container-Managed Transaction Demarcation for Entity Beans
9. Exception Handling
9.1. Application Exceptions
9.2. Bean Provider’s Responsibilities
9.2.1. Application Exceptions
9.2.2. System Exceptions
9.2.3. jakarta.ejb.NoSuchEntityException
9.3. Container Provider Responsibilities
9.3.1. Exceptions from Method Invoked via Entity Bean’s Client View
9.3.2. Exceptions from Other Container-invoked Callbacks
9.3.3. jakarta.ejb.NoSuchEntityException
9.3.4. Non-existing Entity Object
9.3.5. Support for Deprecated Use of java.rmi.RemoteException
9.4. Client’s View of Exceptions
10. Timer Service
10.1. Bean Provider’s View of the Timer Service
10.1.1. Calendar-Based Time Expressions

10.1.2. Non-persistent Timers

179
179
180
181
182
182
182
183
183
183
183
183
183
185
185
185
185
185
185
186
186
188
188
188
188
188
188
189
189
189
189
190
190
190
191
191
191
191

10.1.3. The TimerService Interface
10.1.4. Timer Expiration and Timeout Callback Method
10.1.5. Entity Bean Removal
11. Deployment Descriptor
11.1. Bean Provider’s Responsibilities
11.2. Application Assembler’s Responsibility
12. Packaging Restrictions
12.1. Restrictions
Related Documents
13. Revision History
13.1. Early Draft
13.2. Early Draft 2
13.3. Public Draft
13.4. Proposed Final Draft
13.5. Final Release Candidate
13.6. Final Release

191
191
191
192
192
192
194
194
195
196
196
196
196
196
197
197

Preface

Specification: Jakarta® Enterprise Beans, Optional Features
Version: 4.0
Status: Final

Release: November 05, 2020

Final Jakarta® Enterprise Beans, Optional Features 1

Eclipse Foundation Specification License

Copyright

Copyright © 2018, 2020 Eclipse Foundation. https://www.eclipse.org/legal/efsl.php

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc.
<<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright © [$date-of-document] Eclipse Foundation. This software or document includes material
copied from or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS,” AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

2 Jakarta® Enterprise Beans, Optional Features Final

https://www.eclipse.org/legal/efsl.php

Eclipse Foundation Specification License

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Final Jakarta® Enterprise Beans, Optional Features 3

1.1. Acknowledgements

Chapter 1. Introduction

This document describes features for which support has been made optional as of the 3.2 release of the
Enterprise Beans specification:

 Enterprise Beans 2.1 Entity Bean Component Contract for Container-Managed Persistence

» Enterprise Beans 2.1 Entity Bean Component Contract for Bean-Managed Persistence

Enterprise Beans 1.1 Entity Bean Component Contract for Container-Managed Persistence

Client View of an Entity Bean

 Enterprise Beans QL: Query Language for Container-Managed Persistence Query Methods

1.1. Acknowledgements

The Enterprise Beans 3.2 specification work was conducted as part of JSR-345 under the Java
Community Process Program. This specification is the result of the collaborative work of the members
of the EJB 3.2 Expert Group: Caucho Technology, Inc: Reza Rahman; IBM: Jeremy Bauer; Oracle: Marina
Vatkina, Linda DeMichiel; OW2: Florent Benoit; Pramati Technologies: Ravikiran Noothi; RedHat: Pete
Muir, Carlo de Wolf; TmaxSoft, Inc.: Miju Byon; individual members: Adam Bien; David Blevins;
Antonio Goncalves; Stefan Heldt; Richard Hightower, Jean-Louis Monteiro.

1.2. Organization of the Specification Documents

This specification is organized into the following documents:

* Enterprise Beans Core Contracts and Requirements

* Enterprise Beans Optional Features

The Enterprise Beans Core Contracts and Requirements document defines the contracts and
requirements for the use and implementation of Enterprise Beans. These contracts include those for
the Enterprise Beans 3.2 API, as well as for the earlier Enterprise Beans API that is required to be
supported in this release.

This Enterprise Beans Optional Features document defines the contracts and requirements for the use
and implementation of features support for which has been made optional for the Enterprise Beans.
These contracts are separated from the core contracts requirements in the Enterprise Beans 3.1
specification [1].

1.3. Document Conventions

The regular font is used for information that is prescriptive by the Enterprise Beans specification.

The italic font is used for paragraphs that contain descriptive information, such as notes describing

4 Jakarta® Enterprise Beans, Optional Features Final

1.3. Document Conventions

typical use, or notes clarifying the text with prescriptive specification.

The monospace font is used for code examples.

Final Jakarta® Enterprise Beans, Optional Features 5

Chapter 2. Overview

Chapter 2. Overview

This document describes features for which support has been made optional as of the 3.2 release of the
Enterprise Beans specification:

 Enterprise Beans 2.1 Entity Bean Component Contract for Container-Managed Persistence

» Enterprise Beans 2.1 Entity Bean Component Contract for Bean-Managed Persistence

Enterprise Beans 1.1 Entity Bean Component Contract for Container-Managed Persistence

Client View of an Entity Bean
 Enterprise Beans QL: Query Language for Container-Managed Persistence Query Methods
If an implementation supports such features, it must do so in accordance with the requirements of this
specification. In addition, the following rules apply:
« If any of the following features is supported, all features in the list must be supported:
o Enterprise Beans 2.x entity beans with container-managed persistence
o Enterprise Beans 1.1 entity beans with container-managed persistence
- Enterprise Beans 2.x entity beans with bean-managed persistence
o Enterprise Beans QL

See the general description of the Enterprise Beans goals and requirements in the Enterprise Beans
Core Contracts and Requirements [2] document.

6 Jakarta® Enterprise Beans, Optional Features Final

3.1. Overview

Chapter 3. Client View of an Entity Bean

This chapter describes the client view of an entity bean. It is actually a contract fulfilled by the
container in which the entity bean is deployed. Only the business methods are supplied by the
enterprise bean itself.

Although the client view of the deployed entity beans is provided by classes implemented by the
container, the container itself is transparent to the client.

3.1. Overview

For a client, an entity bean is a component that represents an object-oriented view of some entities
stored in a persistent storage, such as a database, or entities that are implemented by an existing
enterprise application.

The client of an entity bean may be a local client or the client may be a remote client.

This section provides an overview of the entity bean client view that is independent of whether the
client is a remote client or a local client. The differences between remote clients and local clients are
discussed in the following sections.

From its creation until its destruction, an entity object lives in a container. Transparently to the client,
the container provides security, concurrency, transactions, persistence, and other services for the
entity objects that live in the container. The container is transparent to the client—there is no API that
a client can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the entity bean is
deployed properly synchronizes access to the entity object’s state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the container in
which the entity object has been created. The object identity is implemented by the container with the
cooperation of the enterprise bean class.

Multiple enterprise beans can be deployed in a container. For each entity bean deployed in a
container, the container provides a class that implements a home interface for the entity bean. This
interface allows the client to create, find, and remove entity objects within the enterprise bean’s home
as well as to execute home business methods, which are not specific to a particular entity bean object.
A client can obtain the entity bean’s home interface through dependency injection, or the client can
look up the entity bean’s home interface through JNDI. It is the responsibility of the container to make
the entity bean’s home interface available in the JNDI name space.

A client view of an entity bean is independent of the implementation of the entity bean and its
container. This ensures that a client application is portable across all container implementations in
which the entity bean might be deployed.

Final Jakarta® Enterprise Beans, Optional Features 7

3.2. Remote Clients

3.2. Remote Clients

A remote client accesses an entity bean through the entity bean’s remote and remote home interfaces.
The remote and remote home interfaces of the entity bean provide the remote client view.

The remote client view of an entity bean is location independent. A client running in the same JVM as
an entity bean instance uses the same API to access the entity bean as a client running in a different
JVM on the same or different machine.

The container provides classes that implement the entity bean’s remote and remote home interfaces.
The objects that implement the remote home and remote objects are remote Java objects, and are
accessible from a client through the standard Java™ APIs for remote object invocation [3].

A remote client of an entity object can be another enterprise bean deployed in the same or different
container or can be an arbitrary Java program, such as an application, applet, or servlet. The remote
client view of an entity bean can also be mapped to non-Java client environments, such as CORBA
clients not written in the Java programming language.

3.3. Local Clients

Entity beans may also have local clients. A local client is a client that is collocated with the entity bean
and which may be tightly coupled to the bean.

Unlike the remote client view, the local client view of an entity bean is not location independent. The
local client view requires the collocation in the same JVM of both the local client and the entity bean
that provides the local client view. The local client view therefore does not provide the location
transparency provided by the remote client view.

A local client accesses an entity bean through the entity bean’s local home and local component
interfaces. The container provides classes that implement the entity bean’s local home and local
component interfaces. The objects that implement the local home and local component interfaces are
local Java objects.

The arguments of the methods of the local component interface and local home interface are passed by
reference. "' Such entity beans and their clients must be coded to assume that the state of any Java
object that is passed as an argument or result is potentially shared by caller and callee.

Alocal client of an entity bean may be a session bean, a message-driven bean, another entity bean, or a
web-tier component.

The choice between the use of a local or remote programming model is a design decision that the Bean
Provider makes when developing the entity bean application. In general, however, entity beans are
intended to be used with local clients. While it is possible to provide both a client view and a local
client view for an entity bean with container-managed persistence, it is more likely that the entity bean
will be designed with the local view in mind.

8 Jakarta® Enterprise Beans, Optional Features Final

3.4. Choosing Between a Local or Remote Client View

Entity beans that have container-managed relationships with other entity beans, as described in
Enterprise Beans 2.1 Entity Bean Component Contract for Container-Managed Persistence, must be
accessed in the same local scope as those related beans, and therefore typically provide a local client
view. In order to be the target of a container-managed relationship, an entity bean with container-
managed persistence must provide a local component interface.

3.4. Choosing Between a Local or Remote Client View

The following considerations should be taken into account in determining whether a local or remote
access should be used for an entity bean:

* When the Enterprise Beans 2.1 and earlier remote home and remote component interfaces are
used, the narrowing of remote types requires the use of javax.rmi.PortableRemoteObject.narrow
rather than Java language casts.

* Remote calls may involve error cases due to communication, resource usage on other servers, etc.,
which are not expected in local calls. When the Enterprise Beans 2.1 and earlier remote home and
remote component interfaces are used, the client has to explicitly program handlers for handling
the java.rmi.RemoteException

* Methods of a session bean’s remote business interface must not expose entity beans local interface
types, or the managed collection classes that are used for Enterprise Beans 2.1 entity beans with
container-managed persistence as arguments or results.

See Enterprise Beans Core Contracts and Requirements document [2] Subsection "Choosing Between a
Local or Remote Client View" for the more considerations.

3.5. Enterprise Beans Container

An Enterprise Beans container (container for short) is a system that functions as a runtime container
for enterprise beans.

Multiple enterprise beans can be deployed in a single container. For each entity bean deployed in a
container, the container provides a home interface that allows the client to create, find, and remove
entity objects that belong to the entity bean. The home interface may also provide home business
methods, which are not specific to a particular entity bean object. The container makes the entity
bean’s home interface (defined by the Bean Provider and implemented by the Container Provider)
available in the JNDI name space for clients.

An Enterprise Beans server may host one or multiple Enterprise Beans containers. The containers are
transparent to the client: there is no client-level API to manipulate the container.

3.5.1. Locating an Entity Bean’s Home Interface

A client obtains an entity bean’s home interface through dependency injection, or the client locates an
entity bean’s home interface using JNDI. A client’s JNDI name space may be configured to include the

Final Jakarta® Enterprise Beans, Optional Features 9

3.5. Enterprise Beans Container

home interfaces of enterprise beans deployed in multiple Enterprise Beans containers located on
multiple machines on a network. The actual location of an Enterprise Beans container is, in general,
transparent to the client.

For example, the local home interface for the Account entity bean can be located using the following
code segment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)
initialContext.lookup("java:comp/env/ejb/accounts");

If dependency injection were used, the home interface could be obtained as follows:

AccountHome accountHome;

3.5.2. What a Container Provides

The following diagram illustrates the view that a container provides to the client of the entity beans
deployed in the container. Note that a client may be a local client of some entity beans and a remote
client of others.

10 Jakarta® Enterprise Beans, Optional Features Final

3.6. Entity Bean’s Remote Home Interface

container \
4)

y-
/
C EJBODbjects y

C EJBHome)

entity bean 1

client

4)

2
@JB L ocal Objects

(EJBLocaI Homa
k entity bean 2

other enterprise beans

- J

Figure 1. Client View of Entity Beans Deployed in a Container

A

3.6. Entity Bean’s Remote Home Interface

This section is specific to entity beans that provide a remote client view. Local home interfaces are
described in Entity Bean’s Local Home Interface.

The container provides the implementation of the remote home interface for each entity bean
deployed in the container that defines a remote home interface. An object that implements an entity
bean’s remote home interface is called an EJBHome object.

The entity bean’s remote home interface allows a client to do the following:

* Create new entity objects within the home.
 Find existing entity objects within the home.

* Remove an entity object from the home.

Execute a home business method.

Final Jakarta® Enterprise Beans, Optional Features 11

3.6. Entity Bean’s Remote Home Interface

* Get the jakarta.ejb.EJBMetaData interface for the entity bean. The jakarta.ejb.EJBMetaData interface
is intended to allow application assembly tools to discover the metadata information about the
entity bean. The metadata information allows loose client/server binding and scripting.

* Obtain a handle for the home interface. The home handle can be serialized and written to stable
storage. Later, possibly in a different JVM, the handle can be deserialized from stable storage and
used to obtain a reference to the home interface.

An entity bean’s remote home interface must extend the jakarta.ejb.EJBHome interface and follow the
standard rules for Java programming language remote interfaces.

3.6.1. Create Methods

An entity bean’s remote home interface can define zero or more create<METHOD> methods, one for each
way to create an entity object. The arguments of the create methods are typically used to initialize the
state of the created entity object. The name of each create method starts with the prefix “create”.

The return type of a create<METHOD> method on the remote home interface is the entity bean’s remote
interface.

The throws clause of every create<METHOD> method on the remote home interface includes the
java.rmi.RemoteException and the jakarta.ejb.CreateException. It may include additional application-
level exceptions.

The following home interface illustrates three possible create methods:

public interface AccountHome extends jakarta.ejb.EJBHome {
public Account create(String firstName, String lastName,
double initialBalance)
throws RemoteException, CreateException;
public Account create(String accountNumber,
double initialBalance)
throws RemoteException, CreateException,
LowInitialBalanceException;
public Account createlLargeAccount(String firstname,
String lastname, double initialBalance)
throws RemoteException, CreateException;

The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create("John", "Smith", 500.00);

12 Jakarta® Enterprise Beans, Optional Features Final

3.6. Entity Bean’s Remote Home Interface

3.6.2. Finder Methods

An entity bean’s remote home interface defines one or more finder methods ', one for each way to
find an entity object or collection of entity objects within the home. The name of each finder method
starts with the prefix “find”, such as findLargeAccounts. The arguments of a finder method are used by
the entity bean implementation to locate the requested entity objects. The return type of a finder
method on the remote home interface must be the entity bean’s remote interface, or a type
representing a collection of objects that implement the entity bean’s remote interface (see Finder
Methods and Finder Method Return Type).

The throws clause of every finder method on the remote home interface includes the
java.rmi.RemoteException and the jakarta.ejb.FinderException exceptions.

The remote home interface includes the findByPrimaryKey(primaryKey) method, which allows a client to
locate an entity object using a primary key. The name of the method is always findByPrimaryKey; it has a
single argument that is the same type as the entity bean’s primary key type, and its return type is the
entity bean’s remote interface. There is a unique findByPrimaryKey(primaryKey) method for an entity
bean on its remote home interface; this method must not be overloaded. The implementation of the
findByPrimaryKey(primaryKey) method must ensure that the entity object exists.

The following example shows the findByPrimaryKey method:

public interface AccountHome extends jakarta.ejb.EJBHome {

public Account findByPrimaryKey(String AccountNumber)
throws RemoteException, FinderException;

The following example illustrates how a client uses the findByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey("100-3450-3333");

3.6.3. Remove Methods

The jakarta.ejb.EJBHome interface defines several methods that allow the client to remove an entity
object.

Final Jakarta® Enterprise Beans, Optional Features 13

3.6. Entity Bean’s Remote Home Interface

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,
RemoveException;
void remove(Object primaryKey) throws RemoteException,
RemoveException;

After an entity object has been removed, subsequent attempts to access the entity object by a remote
client result in the java.rmi.NoSuchObjectException.

3.6.4. Home Methods

An entity bean’s remote home interface may define one or more home methods. Home methods are
methods that the Bean Provider supplies for business logic that is not specific to an entity bean
instance.

Home methods on the remote home interface can have arbitrary method names, but they must not
start with “create”, “find”, or “remove”. The arguments of a home method are used by the entity bean
implementation in computations that do not depend on a specific entity bean instance. The method
arguments and return value types of a home method on the remote home interface must be legal types
for RMI-IIOP.

The throws clause of every home method on the remote home interface includes the
java.rmi.RemoteException. It may also include additional application-level exceptions.

The following example shows two home methods:

public interface EmployeeHome extends jakarta.ejb.EJBHome {

// this method returns a living index depending on

// the state and the base salary of an employee:

// the method is not specific to an instance

public float livingIndex(String state, float salary)
throws RemoteException;

// this method adds a bonus to all of the employees
// based on a company profit-sharing index
public void addBonus(float company_share_index)
throws RemoteException, ShareIndexOutOfRangeException;

14 Jakarta® Enterprise Beans, Optional Features Final

3.7. Entity Bean’s Local Home Interface

3.7. Entity Bean’s Local Home Interface

The container provides the implementation of the local home interface for each entity bean deployed
in the container that defines a local home interface. An object that implements an entity bean’s local
home interface is called an EJBLocalHome object.

The entity bean’s local home interface allows a local client to do the following:

* Create new entity objects within the home.
» Find existing entity objects within the home.
* Remove an entity object from the home.

* Execute a home business method.

An entity bean’s local home interface must extend the jakarta.ejb.EJBLocalHome interface.

3.7.1. Create Methods

An entity bean’s local home interface can define zero or more create<METHOD> methods, one for each
way to create an entity object. The arguments of the create methods are typically used to initialize the
state of the created entity object. The name of each create method starts with the prefix “create”.

The return type of a create<METHOD> method on the local home interface is the entity bean’s local
interface.

The throws clause of every create<METHOD> method on the local home interface includes the
jakarta.ejb.CreateException. It may include additional application-level exceptions. It must not include
the java.rmi.RemoteException.

The following local home interface illustrates three possible create methods:

public interface AccountHome extends jakarta.ejb.EJBLocalHome {
public Account create(String firstName, String lastName,
double initialBalance)
throws CreateException;
public Account create(String accountNumber,
double initialBalance)
throws CreateException, LowInitialBalanceException;
public Account createlargeAccount(String firstname,
String lastname, double initialBalance)
throws CreateException;

The following example illustrates how a client creates a new entity object:

Final Jakarta® Enterprise Beans, Optional Features 15

3.7. Entity Bean’s Local Home Interface

AccountHome accountHome = ...;
Account account = accountHome.create("John", "Smith", 500.00);

3.7.2. Finder Methods

An entity bean’s local home interface defines one or more finder methods ', one for each way to find

an entity object or collection of entity objects within the home. The name of each finder method starts
with the prefix “find”, such as findLargeAccounts. The arguments of a finder method are used by the
entity bean implementation to locate the requested entity objects. The return type of a finder method
on the local home interface must be the entity bean’s local interface, or a type representing a collection
of objects that implement the entity bean’s local interface (see Finder Methods and Finder Method
Return Type).

The throws clause of every finder method on the local home interface includes the
jakarta.ejb.FinderException. The throws clause must not include the java.rmi.RemoteException.

The local home interface includes the findByPrimaryKey(primaryKey) method, which allows a client to
locate an entity object using a primary key. The name of the method is always findByPrimaryKey; it has a
single argument that is the same type as the entity bean’s primary key type, and its return type is the
entity bean’s local interface. There is a unique findByPrimaryKey(primaryKey) method for an entity bean
on its local home interface; this method must not be overloaded. The implementation of the
findByPrimaryKey method must ensure that the entity object exists.

The following example shows the findByPrimaryKey method:

public interface AccountHome extends jakarta.ejb.EJBLocalHome {

public Account findByPrimaryKey(String AccountNumber)
throws FinderException;

The following example illustrates how a client uses the findByPrimaryKey method:

AccountHome accountHome = ...;
Account account = accountHome.findByPrimaryKey("100-3450-3333");

3.7.3. Remove Methods

The jakarta.ejb.EJBLocalHome interface defines the remove method to allow the client to remove an
entity object.

16 Jakarta® Enterprise Beans, Optional Features Final

3.8. Entity Object’s Life Cycle

public interface EJBLocalHome {
void remove(Object primaryKey) throws RemoveException,
EJBException;

After an entity object has been removed, subsequent attempts to access the local entity object by the
local client result in the jakarta.ejb.NoSuchObjectLocalException.

3.7.4. Home Methods

An entity bean’s local home interface may define one or more home methods. Home methods are
methods that the Bean Provider supplies for business logic that is not specific to an entity bean
instance.

Home methods can have arbitrary method names, but they must not start with “create”, “find” or
“remove”. The arguments of a home method are used by the entity bean implementation in
computations that do not depend on a specific entity bean instance.

The throws clause of a home method on the local home interface may include additional application-
level exceptions. It must not include the java.rmi.RemoteException.

The following example shows two home methods:

public interface EmployeeHome extends jakarta.ejb.EJBLocalHome {

// this method returns a living index depending on
// the state and the base salary of an employee:

// the method is not specific to an instance

public float livingIndex(String state, float salary);

// this method adds a bonus to all of the employees

// based on a company profit sharing index

public void addBonus(float company_share_index)
throws ShareIndexOutOfRangeException;

3.8. Entity Object’s Life Cycle

This section describes the life cycle of an entity object from the perspective of a client.

The following diagram illustrates a client’s point of view of an entity object life cycle. (The term
"referenced" in the diagram means that the client program has a reference to the entity object’s remote
or local interface.)

Final Jakarta® Enterprise Beans, Optional Features 17

3.8. Entity Object’s Life Cycle

object.businessMethod(...)
throws NoSuchObjectException or

NoSuchL ocal ObjectException
does not exist release reference does not exist
and € and
not referenced referenced
N N
home.create< METHOD>(...) object.remove()
i or
direct direct delete home.remove...)
insert or or
home.remove(...) direct delete
v home.find(...)
exists > exists
and and
not referenced /€ referenced
release reference
home.businessMethod(...) object.businessMethod(...)
create() action initiated by client

direct delete action on database from outside Enterprise Beans

Figure 2. Client View of Entity Object Life Cycle

An entity object does not exist until it is created. Until it is created, it has no identity. After it is created,
it has identity. A client creates an entity object using the entity bean’s home interface, whose class is
implemented by the container. When a client creates an entity object, the client obtains a reference to
the newly created entity object.

In an environment with legacy data, entity objects may “exist” before the container and entity bean
are deployed. In addition, an entity object may be “created” in the environment via a mechanism other
than by invoking a create<METHOD> method of the home interface (e.g. by inserting a database record),
but still may be accessible via the finder methods. Also, an entity object may be deleted directly using
other means than the remove operation (e.g. by deletion of a database record). The “direct insert” and
“direct delete” transitions in the diagram represent such direct database manipulation.

All entity objects are considered persistent objects. The lifetime of an entity object is not limited by the
lifetime of the Java Virtual Machine process in which the entity bean instance executes. While a crash
of the Java Virtual Machine may result in a rollback of current transactions, it does not destroy

18 Jakarta® Enterprise Beans, Optional Features Final

3.8. Entity Object’s Life Cycle

previously created entity objects nor invalidate the references to the home and component interfaces
held by clients.

Multiple clients can access the same entity object concurrently. Transactions are used to isolate the
clients’ work from each other.

3.8.1. References to Entity Object Remote Interfaces
A client can get a reference to an existing entity object’s remote interface in any of the following ways:

* Receive the reference as a parameter in a method call (input parameter or result).
» Find the entity object using a finder method defined in the entity bean’s remote home interface.

* Obtain the reference from the entity object’s handle. (See Entity Bean’s Handle).
A client that has a reference to an entity object’s remote interface can do any of the following:

* Invoke business methods on the entity object through the remote interface.

Obtain a reference to the enterprise bean’s remote home interface.

Pass the reference as a parameter or return value of a method call.

Obtain the entity object’s primary key.

* Obtain the entity object’s handle.

Remove the entity object.

All references to an entity object that does not exist are invalid. All attempted invocations on an entity
object that does not exist result in an java.rmi.NoSuchObjectException being thrown.

3.8.2. References to Entity Object Local Interfaces

A local client can get a reference to an existing entity object’s local interface in any of the following
ways:

* Receive the reference as a result of a method call.
* Find the entity object using a finder method defined in the entity bean’s local home interface.

Alocal client that has a reference to an entity object’s local interface can do any of the following:

* Invoke business methods on the entity object through the local interface.
* Obtain a reference to the enterprise bean’s local home interface.

* Pass the reference as a parameter or return value of a local method call.

Obtain the entity object’s primary key.

* Remove the entity object.

Final Jakarta® Enterprise Beans, Optional Features 19

3.9. Primary Key and Object Identity

All local references to an entity object that does not exist are invalid. All attempted invocations on an
entity object that does not exist result in a jakarta.ejb.NoSuchObjectLocalException being thrown.

Alocal interface type must not be passed as an argument or result of a remote interface method.

3.8.3. References to Entity Object and Stateful Session Bean Instance
Passivation and Conversational State

If an entity bean is referenced from a stateful session bean, the Bean Provider is required to ensure
that the PrePassivate method leaves the instance fields ready to be serialized by the container. In
addition to the rules described in Enterprise Beans Core Contracts and Requirements document [2]
Subsection "Instance Passivation and Conversational State", for the entity bean references, the objects
that are assigned to the instance’s non-transient fields after the session bean PrePassivate method
completes can also be one of the following:

* Areference to an entity bean’s local component interface, even if it is not serializable.

* Areference to an entity bean’s local home interface, even if it is not serializable.

3.9. Primary Key and Object Identity

Every entity object has a unique identity within its home. If two entity objects have the same home and
the same primary key, they are considered identical.

The Enterprise Beans architecture allows a primary key class to be any class that is a legal Value Type
in RMI-IIOP, subject to the restrictions defined in Entity Bean’s Primary Key Class and Entity Bean’s
Primary Key Class. The primary key class may be specific to an entity bean class (i.e., each entity bean
class may define a different class for its primary key, but it is possible that multiple entity beans use
the same primary key class).

A client that holds a reference to an entity object’s component interface can determine the entity
object’s identity within its home by invoking the getPrimaryKey method on the reference.

The object identity associated with a reference does not change over the lifetime of the reference. (That
is, getPrimaryKey always returns the same value when called on the same entity object reference). If an
entity object has both a remote home interface and a local home interface, the result of invoking the
getPrimaryKey method on a reference to the entity object’s remote interface and on a reference to the
entity object’s local interface is the same.

A client can test whether two entity object references refer to the same entity object by using the
isIdentical method. Alternatively, if a client obtains two entity object references from the same home,
it can determine if they refer to the same entity by comparing their primary keys using the equals
method.

The following code illustrates using the isIdentical method to test if two object references refer to the
same entity object:

20 Jakarta® Enterprise Beans, Optional Features Final

3.10. Entity Bean’s Remote Interface

Account accl cen)
Account acc? -

if (accl.isIdentical(acc?)) {
// accl and acc2 are the same entity object
} else {
// acc2 and acc? are different entity objects

A client that knows the primary key of an entity object can obtain a reference to the entity object by
invoking the findByPrimaryKey(key) method on the entity bean’s home interface.

Note that the Enterprise Beans architecture does not specify “object equality” (i.e. use of the ==
operator) for entity object references. The result of comparing two object references using the Java
programming language Object.equals(Object obj) method is unspecified. Performing the
Object.hashCode() method on two object references that represent the entity object is not guaranteed to
yield the same result. Therefore, a client should always use the isIdentical method to determine if two
entity object references refer to the same entity object.

Note that the use of isldentical for the comparison of object references applies to the
implementation of the methods of the java.util.Collection API as well.

3.10. Entity Bean’s Remote Interface

A client can access an entity object through the entity bean’s remote interface. An entity bean’s remote
interface must extend the jakarta.ejb.EJBObject interface. A remote interface defines the business
methods that are callable by remote clients.

The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends jakarta.ejb.EJBObject {
void debit(double amount)
throws java.rmi.RemoteException,
InsufficientBalanceException;
void credit(double amount)
throws java.rmi.RemoteException;
double getBalance()
throws java.rmi.RemoteException;

The jakarta.ejb.EJBObject interface defines the methods that allow the client to perform the following
operations on an entity object’s reference:

Final Jakarta® Enterprise Beans, Optional Features 21

3.11. Entity Bean’s Local Interface

Obtain the remote home interface for the entity object.
* Remove the entity object.

* Obtain the entity object’s handle.

Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in the jakarta.ejb.EJBObject
interface. Only the business methods are delegated to the instances of the enterprise bean class.

Note that the entity object does not expose the methods of the jakarta.ejb.EnterpriseBean interface to
the client. These methods are not intended for the client—they are used by the container to manage the
enterprise bean instances.

3.11. Entity Bean’s Local Interface

Alocal client can access an entity object through the entity bean’s local interface. An entity bean’s local
interface must extend the jakarta.ejb.EJBLocalObject interface. A local interface defines the business
methods that are callable by local clients.

The following example illustrates the definition of an entity bean’s local interface:

public interface Account extends jakarta.ejb.EJBLocalObject {
void debit(double amount)
throws InsufficientBalanceException;
void credit(double amount);
double getBalance();

Note that the methods of the entity bean’s local interface must not throw the java.rmi.RemoteException.

The jakarta.ejb.EJBLocalObject interface defines the methods that allow the local client to perform the
following operations on an entity object’s local reference:

* Obtain the local home interface for the entity object.

* Remove the entity object.

* Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in the jakarta.ejb.EJBLocalObject
interface. Only the business methods are delegated to the instances of the enterprise bean class.

Note that the entity object does not expose the methods of the jakarta.ejb.EntityBean or the optional
jakarta.ejb.TimedObject interface to the local client. These methods are not intended for the local
client—they are used by the container to manage the enterprise bean instances.

22 Jakarta® Enterprise Beans, Optional Features Final

3.12. Entity Bean’s Handle

3.12. Entity Bean’s Handle

An entity object’s handle is an object that identifies the entity object on a network. A client that has a
reference to an entity object’s remote interface can obtain the entity object’s handle by invoking the
getHandle method on the remote interface. The getHandle method is only available on the remote
interface.

Since a handle class extends java.io.Serializable, a client may serialize the handle. The client may use
the serialized handle later, possibly in a different process or even system, to re-obtain a reference to
the entity object identified by the handle.

The client code must use the javax.rmi.PortableRemoteObject.narrow method to convert the result of the
getEJBObject method invoked on a handle to the entity bean’s remote interface type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a
program running in one JVM must be able to obtain and serialize the handle, and another program
running in a different JVM must be able to deserialize it and re-create an object reference. An entity
handle is typically implemented to be usable over a long period of time—it must be usable at least
across a server restart.

Containers that store long-lived entities will typically provide handle implementations that allow clients
to store a handle for a long time (possibly many years). Such a handle will be usable even if parts of the
technology used by the container (e.g. ORB, DBMS, server) have been upgraded or replaced while the
client has stored the handle. Support for this “quality of service” is not required by the Enterprise Beans
specification.

An Enterprise Beans container is not required to accept a handle that was generated by another
vendor’s Enterprise Beans container.

The use of a handle is illustrated by the following example:

Final Jakarta® Enterprise Beans, Optional Features 23

3.13. Entity Home Handles

// A client obtains a handle of an account entity object and
// stores the handle in stable storage.

//
ObjectOutputStream stream = ...;
Account account = ...;

Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and use the

// handle to resurrect an object reference to the

// account entity object.

//

ObjectInputStream stream = ...;

Handle handle = (Handle)stream.readObject(handle);

Account account = (Account)javax.rmi.PortableRemoteObject.narrow(
handle.qgetEJBObject(), Account.class);

account.debit(100.00);

A handle is not a capability, in the security sense, that would automatically grant its holder the right to
invoke methods on the object. When a reference to an object is obtained from a handle, and then a
method on the object is invoked, the container performs the usual access checks based on the caller’s
principal.

3.13. Entity Home Handles

The Enterprise Beans specification allows a client to obtain a handle for the remote home interface.
The client can use the home handle to store a reference to an entity bean’s remote home interface in
stable storage, and re-create the reference later. This handle functionality may be useful to a client that
needs to use the remote home interface in the future, but does not know the JNDI name of the remote
home interface.

A handle to a remote home interface must implement the jakarta.ejb.HomeHandle interface.

The client code must use the javax.rmi.PortableRemoteObject.narrow method to convert the result of the
getEJBHome method invoked on a handle to the home interface type.

The lifetime and scope of a handle is specific to the handle implementation. At a minimum, a program
running in one JVM must be able to serialize the handle, and another program running in a different
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically
implemented to be usable over a long period of time—it must be usable at least across a server restart.

3.14. Type Narrowing of Object References

A client program that is intended to be interoperable with all compliant Enterprise Beans container

24 Jakarta® Enterprise Beans, Optional Features Final

3.14. Type Narrowing of Object References

implementations must use the javax.rmi.PortableRemoteObject.narrow method to perform type-
narrowing of the client-side representations of the remote home and remote interfaces.

Note: Programs that use the cast operator to narrow the remote and remote home interfaces are likely to
fail if the container implementation uses RMI-IIOP as the underlying communication transport.

[1] More literally, references are passed by value in the JVM: an argument variable of primitive type holds a value of
that primitive type; an argument variable of a reference type hold a reference to the object. See [4].

[2] The findByPrimaryKey method is mandatory for the remote home interface of all entity beans.

[3] The findByPrimaryKey method is mandatory for the local home interface of all Entity Beans.

Final Jakarta® Enterprise Beans, Optional Features 25

4.1. Overview

Chapter 4. Enterprise Beans 2.1 Entity Bean
Component Contract for Container-Managed
Persistence

The Enterprise Beans 2.1 entity bean component contract for container-managed persistence is the
contract between an entity bean and its container. It defines the life cycle of the entity bean instances,
the model for method delegation of the business methods invoked by the client, and the model for the
management of the entity bean’s persistent state and relationships. The main goal of this contract is to
ensure that an entity bean component using container-managed persistence is portable across all
compliant Enterprise Beans containers.

This chapter defines the Enterprise Bean Provider’s view of this contract and responsibilities of the
Container Provider for managing the life cycle of the enterprise bean instances and their persistent
state and relationships.

Note that use of dependency injection, interceptors, and Java language metadata annotations is not
supported for Enterprise Beans 2.1 entity beans.

4.1. Overview

In accordance with the architecture for container-managed persistence, the Bean Provider develops a
set of entity beans for an application, and determines the relationships among them. The Bean
Provider designs an abstract persistence schema for each entity bean, which defines its container-
managed fields and relationships, and determines the methods for accessing them. The entity bean
instance accesses its container-managed fields and relationships at runtime by means of the methods
defined for its abstract persistence schema.

The abstract persistence schema is specified in the deployment descriptor that is produced by the Bean
Provider. The Deployer, using the Container Provider’s tools, determines how the persistent fields and
relationships defined by the abstract persistence schema are mapped to a database or other persistent
store, and generates the necessary additional classes and interfaces that enable the container to
manage the persistent fields and relationships of the entity bean instances at runtime.

This chapter describes the component contract for an Enterprise Beans 2.1 entity bean with container-
managed persistence, and how data independence is maintained between the entity bean instance and
its representation in the persistent store. It describes this contract from the viewpoints of both the
Bean Provider and the container.

4.2. Container-Managed Entity Persistence and Data
Independence

The Enterprise Beans component model provides a separation between the client view of a bean (as

26 Jakarta® Enterprise Beans, Optional Features Final

4.2. Container-Managed Entity Persistence and Data Independence

presented by its home and component interfaces) and the entity bean class (which provides the
implementation of the client view). The Enterprise Beans architecture for container-managed
persistence adds to this a separation between the entity bean class (as defined by the Bean Provider)
and its persistent representation. The container-managed persistence architecture thus provides not
only a layer of data independence between the client view of a bean as an entity object and the Bean
Provider’s internal view of the bean in terms of the entity bean instance, but also between the entity
bean instance and its persistent representation. This allows an entity bean to be evolved
independently from its clients, without requiring the redefinition or recompilation of those clients, and
it allows an entity bean to be redeployed across different containers and different persistent data
stores, without requiring the redefinition or recompilation of the entity bean class.

In container-managed persistence, unlike in bean-managed persistence, the Bean Provider does not
write database access calls in the methods of the entity bean class. Instead, persistence is handled by
the container at runtime. The entity Bean Provider must specify in the deployment descriptor those
persistent fields and relationships for which the container must handle data access. The Bean Provider
codes all persistent data access by using the accessor methods that are defined for the abstract
persistence schema. The implementation of the persistent fields and relationships, as well as all data
access, is deferred to the container.

It is the responsibility of the Deployer to map the abstract persistence schema of a set of interrelated
entity bean classes into the physical schema used by the underlying data store (e.g., into a relational
schema) by using the Container Provider’s tools. The Deployer uses the deployment descriptor as input
to the Container Provider’s tools to perform this mapping. The Container Provider’s tools are also used
to generate the concrete implementation of the entity bean classes, including the code that delegates
calls to the accessor methods of the entity bean class to the runtime persistent data access layer of the
container.

The Enterprise Beans deployment descriptor for Enterprise Beans 2.1 entity beans describes logical
relationships among entity beans. It does not provide a mechanism for specifying how the abstract
persistence schema of an entity bean or of a set of interrelated entity beans is to be mapped to an
underlying database. This is the responsibility of the Deployer, who, using the Container Provider’s
tools, uses the logical relationships that are specified in the deployment descriptor to map to the
physical relationships that are specific to the underlying resource. It is the responsibility of the
container to manage the mapping between the logical and physical relationships at runtime and to
manage the referential integrity of the relationships.

The advantage of using container-managed persistence is that the entity bean can be logically
independent of the data source in which the entity is stored. The Container Provider’s tools can, for
example, generate classes that use JDBC or SQLJ to access the entity state in a relational database;
classes that implement access to a non-relational data source, such as an IMS database; or classes that
implement function calls to existing enterprise applications. These tools are typically specific to each
data source.

Final Jakarta® Enterprise Beans, Optional Features 27

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

(a) Entity bean is an object view of a collection of related records
in the database

4)

container

. der entity
bean Order 100

- J

(b) Entity bean is an object view of an existing application

4)

container

: | order entity
G

- J

exisiting
application

Figure 3. View of Underlying Data Sources Accessed Through Entity Bean

4.3. The Entity Bean Provider’s View of Container-
Managed Persistence

An entity bean implements an object view of a business entity or set of business entities stored in an
underlying database or implemented by an existing enterprise application (for example, by a
mainframe program or by an ERP application).

An entity bean with container-managed persistence typically consists of its entity bean class; a
component interface which defines its client view business methods; a home interface which defines
the create, remove, home, and finder methods of its client view; and its abstract persistence schema as
specified in the deployment descriptor.

A client of an entity bean can control the life cycle of a bean by using the bean’s home interface and
can manipulate the bean as a business entity by using the methods defined by its component interface.
The home and component interfaces of a bean define its client view.

28 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

An entity bean with container-managed persistence typically has container-managed relationships
with other container-managed persistence entity beans, as defined by the relationships element of the
deployment descriptor. The architecture for container-managed persistence thus allows the Bean
Provider to implement complex applications by defining a complex abstract persistence schema
encompassing multiple entity bean classes related by means of container-managed relationships.

An entity bean accesses related entity beans by means of the accessor methods for its container-
managed relationship fields, which are specified by the cmr-field elements of its abstract persistence
schema defined in the deployment descriptor. Entity bean relationships are defined in terms of the
local interfaces of the related beans, and the view an entity bean presents to its related beans is
defined by its local home and local interfaces. Thus, an entity bean can be the target of a relationship
from another entity bean only if it has a local interface.

The Bean Provider programming an application that uses container-managed persistence typically
avoids calls to the methods of the remote home and remote interfaces in favor of invoking related
beans by means of the methods of their local interfaces. Unlike remote method calls, such internal
method invocations are made using call-by-reference and commonly do not involve the checking of
method permissions.

The Enterprise Beans architecture for container-managed persistence provides great flexibility to the
Bean Provider in designing an application.

For example, a group of related entity beans—O0rder, Lineltem and Customer—might all be defined as
having only local interfaces, with a remotable session bean containing the business logic that drives
their invocation. The individual entity beans form a coordinated whole that provides an
interrelated set of services that are exposed by their several home and component interfaces. The
services provided by the local network of entity beans is exposed to the remote client view through
the home and remote interfaces of the session bean, which offers a coarser grained remote service.

Alternatively, a single entity bean might represent an independent, remotable business object that
forms a unit of distribution that is designed to be referenced remotely by multiple enterprise beans
and/or other remote clients. Such a remotable entity bean might make use of other entity beans
within its local scope to further model its complex internal state. For example, an Order entity bean
might make use of a Lineltem entity bean internally, not exposing it to remote clients. In this case,
the Order entity bean might define both a remote and a local component interface, where the local
interface is presented only to the related entity beans, such as Lineltem, and the remote interface is
presented to session beans and/or web-tier clients.

4.3.1. The Entity Bean Provider’s Programming Contract

The Bean Provider must observe the following programming contract when defining an entity bean
class that uses container-managed persistence:

* The Bean Provider must define the entity bean class as an abstract class. The container provides

Final Jakarta® Enterprise Beans, Optional Features 29

4.3.

30

The Entity Bean Provider’s View of Container-Managed Persistence

the implementation class that is used at runtime.

The container-managed persistent fields and container-managed relationship fields must not be
defined in the entity bean class. From the perspective of the Bean Provider, the container-managed
persistent fields and container-managed relationship fields are virtual fields only, and are accessed
through get and set accessor methods. The implementation of the container-managed persistent
fields and container-managed relationship fields is supplied by the container.

The container-managed persistent fields and container-managed relationship fields must be
specified in the deployment descriptor using the cmp-field and cmr-field elements respectively. The
names of these fields must be valid Java identifiers and must begin with a lowercase letter, as
determined by java.lang.Character.isLowerCase.

The Bean Provider must define the accessor methods for the container-managed persistent fields
and container-managed relationship fields as get and set methods, using the JavaBeans
conventions. The implementation of the accessor methods is supplied by the container.

The accessor methods must be public, must be abstract, and must bear the name of the container-
managed persistent field (cmp-field) or container-managed relationship field (cmr-field) that is
specified in the deployment descriptor, and in which the first letter of the name of the cmp-field or
cmr-field has been uppercased and prefixed by “get” or “set”.

The accessor methods for a container-managed relationship field must be defined in terms of the
local interface of the related entity bean, as described in The Entity Bean Provider’s View of
Persistent Relationships.

The accessor methods for container-managed relationship fields for one-to-many or many-to-many
relationships must utilize one of the following Collection interfaces: java.util.Collection or
java.util.Set. The Collection interfaces used in relationships are specified in the deployment
descriptor. The implementation of the collection classes used for the container-managed
relationship fields is supplied by the container.

An entity bean local interface type (or a collection of such) can be the type of a cmr-field. An entity
bean local interface type (or a collection of such) cannot be the type of a cmp-field.

The accessor methods for the container-managed relationship fields must not be exposed in the
remote interface of an entity bean.

The local interface types of the entity bean and of related entity beans must not be exposed through
the remote interface of the entity bean.

The collection classes that are used for container-managed relationships must not be exposed
through the remote interface of the entity bean.

Once the primary key for an entity bean has been set, the Bean Provider must not attempt to
change it by use of set accessor methods on the primary key cmp-fields. The Bean Provider should
therefore not expose the set accessor methods for the primary key cmp-fields in the component
interface of the entity bean.

The Bean Provider must ensure that the Java types assigned to the cmp-fields are restricted to the
following: Java primitive types and Java serializable types.

Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

4.3.2. The Entity Bean Provider’s View of Persistent Relationships
An entity bean may have relationships with other entity beans with container-managed persistence.
Relationships may be one-to-one, one-to-many, or many-to-many relationships.

Container-managed relationships can exist only among entity beans within the same local relationship
scope, as defined by the relationships element in the deployment descriptor. Container-managed
relationships are defined in terms of the local interfaces of the related beans.

Relationships may be either bidirectional or unidirectional. If a relationship is bidirectional, it can be
navigated in both directions, whereas a unidirectional relationship can be navigated in one direction
only.

A unidirectional relationship is implemented with a cmr-field on the entity bean instance from which
navigation can take place, and no related cmr-field on the entity bean instance that is the target of the
relationship. Unidirectional relationships are typically used when the Bean Provider wishes to restrict
the visibility of a relationship.

An entity bean that does not have a local interface can have only unidirectional relationships from
itself to other entity beans. The lack of a local interface prevents other entity beans from having a
relationship to it.

The bean developer navigates or manipulates relationships by using the get and set accessor methods
for the container-managed relationship fields and the java.util.Collection API for collection-valued
container-managed relationship fields.

The Bean Provider must consider the type and cardinality of relationships when the entity bean classes
are programmed. The get method for a cmr-field must return either the local interface of the entity
bean or a collection (either java.util.Collection or java.util.Set) of the same. The set method for the
relationship must take as an argument the entity bean’s local interface or a collection of the same.

4.3.3. Dependent Value Classes

A dependent value class is a concrete class that is the value of a cmp-field. A dependent value class may
be a class that the Bean Provider wishes to use internally within an entity bean with container-
managed persistence, and/or it may be a class that the Bean Provider chooses to expose through the
remote (or local) interface of the entity bean.

A dependent value class can be the value of a cmp-field; it cannot be the value of a cmr-field.

The get accessor method for a cmp-field that corresponds to a dependent value class returns a copy of
the dependent value class instance. The assignment of a dependent value class value to a cmp-field
using the set accessor method causes the value to be copied to the target cmp-field.

A dependent value class must be serializable. The internal structure of a dependent value class is not
described in the Enterprise Beans deployment descriptor.

Final Jakarta® Enterprise Beans, Optional Features 31

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

4.3.4. Remove Protocols
The Bean Provider can specify the removal of an entity object in two ways:

* By the use of a remove method on the entity bean’s component interface or home interface.

* By the use of a cascade-delete specification in the deployment descriptor.

4.3.4.1. Remove Methods

When the remove method is invoked on an entity object, the container must invoke the entity Bean
Provider’s ejbRemove method as described in Container’s View. After the Bean Provider’s ejbRemove
method returns (and prior to returning to the client), the container must remove the entity object from
all relationships in which it participates, and then remove its persistent representation. "

* Once an entity has been removed from a relationship, the accessor methods for any relationships
to the entity will reflect this removal. An accessor method for a one-to-one or many-to-one
relationship to the entity will return null; and an accessor method for a many-to-many relationship
to the entity will return a collection from which the entity object has been removed.

* The container must detect any subsequent attempt to invoke an accessor method on the removed
entity object and throw the java.rmi.NoSuchObjectException if the client is a remote client or the
jakarta.ejb.NoSuchObjectLocalException if the client is a local client. The container must detect an
attempt to assign a removed entity object as the value of a cmr-field of another object (whether as
an argument to a set accessor method or as an argument to a method of the java.util.Collection
API) and throw the java.lang.IllegalArgumentException.

After removing the entity object from all relationships and removing its persistent representation, the
container must then cascade the removal to all entity beans with which the entity had been previously
in container-managed relationships for which the cascade-delete option was specified.

More than one relationship may be affected by the removal of an entity object, as in the following
example. Once the shipping address object used by the Order bean has been removed, the billing
address accessor method will also return null.

public void changeAddress()
Address a = createAddress();
setShippingAddress(a);
setBillingAddress(a);
//both relationships now reference the same entity object
getShippingAddress().remove();
if (getBillingAddress() == null) // it must be

else ...

// this is impossible....

The remove method, alone, causes only the entity on which it is invoked to be removed. It does not

32 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

cause the deletion to be cascaded to other entity objects. In order for the deletion of one entity object to
be automatically cascaded to another, the cascade-delete mechanism should be used.

4.3.4.2. Cascade-delete

The cascade-delete deployment descriptor element is used within a particular relationship to specify
that the lifetime of one or more entity objects is dependent upon the lifetime of another entity object.

The cascade-delete deployment descriptor element is contained within the ejb-relationship-role
element. The cascade-delete element can only be specified for an ejb-relationship-role element
contained in an ejb-relation element if the other ejb-relationship-role element in the same ejb-
relation element specifies a multiplicity of One. The cascade-delete option cannot be specified for a
many-to-many relationship. The deletion of one entity object can only be cascaded to cause the
deletion of other entity objects if the first entity object is in a one-to-one or one-to-many relationship
with those other entity objects.

If an entity is deleted, and the cascade-delete deployment descriptor element is specified for a related
entity bean, then the removal is cascaded to cause the removal of the related entity object or objects.
As with the remove operation, the removal triggered by the cascade-delete option causes the container
to invoke the ejbRemove method on the entity bean instance that is to be removed before the persistent
representation of that entity object is removed. Once an entity has been removed from a relationship
because of a cascaded delete, the accessor methods for any relationships to the entity will reflect this
removal. An accessor method for a one-to-one or many-to-one relationship to the entity will return
null; and an accessor method for a many-to-many relationship to the entity will return a collection
from which the entity object has been removed. After removing the entity object from all relationships
and removing its persistent representation, the container must then cascade the removal to all entity
beans with which the entity had been previously been in container-managed relationships for which
the cascade-delete option was specified.

The use of cascade-delete causes only the entity object or objects in the relationship for which it is
specified to be deleted. It does not cause the deletion to be further cascaded to other entity objects,
unless they are participants in relationship roles for which cascade-delete has also been specified.

4.3.5. Identity of Entity Objects

From the viewpoint of the Bean Provider, entity objects have a runtime object identity that is
maintained by the container.

The container maintains the persistent identity of an entity object on the basis of its primary key.

The primary key of an entity bean may or may not be visible as one or more cmp-fields of the instance,
depending on the way in which it is specified. The Bean Provider specifies the primary key as
described in Primary Keys. Once it has been set, the Bean Provider must not attempt to change the
value of a primary key field by means of a set method on its cmp-fields.

When a new instance of an entity bean whose primary key fields are visible in the entity bean class is

Final Jakarta® Enterprise Beans, Optional Features 33

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

created, the Bean Provider must use the ejbCreate<METHOD> method to set all the primary key fields of
the entity bean instance before the instance can participate in a relationship, e.g. be used in a set
accessor method for a cmr-field. The Bean Provider must not reset a primary key value by means of a
set method on any of its cmp-fields after it has been set in the ejbCreate<METHOD> method. If the Bean
Provider attempts to reset a primary Kkey value, the container must throw the
java.lang.I1legalStateException.

Note that the container’s implementation of the referential integrity semantics for container-
managed relationships must not cause the value of the primary key to change.

The Bean Provider should not use untrimmed or blank-padded string-valued primary key fields. Use
of untrimmed primary key fields may cause comparison operations based on primary keys to fail,
and may result in non-portable behavior. If untrimmed strings are used in primary key fields or
other cmp-fields, the container or database system may trim them.

4.3.6. Semantics of Assignment for Relationships

The assignment operations for container-managed relationships have a special semantics that is
determined by the referential integrity semantics for the relationship multiplicity.

In the case of a one-to-one relationship, when the Bean Provider uses a set accessor method to assign
an object from a cmr-field in one instance to a cmr-field of the same relationship type (i.e., as defined
by the ejb-relation and ejb-relationship-role deployment descriptor elements) in another instance,
the object is effectively moved and the value of the source cmr-field is set to null in the same
transaction context. If the argument to the set accessor method is not of the same type as the cmr-field,
the container must throw the java.lang.IllegalArqumentException.

In the case of a one-to-many or many-to-many relationship, either the java.util.Collection API or a set
accessor method may be used to manipulate the contents of a collection-valued cmr-field. These two
approaches are discussed below.

4.3.6.1. Use of the java.util.Collection API to Update Relationships

The methods of the java.util.Collection API for the container-managed collections used for collection-
valued cmr-fields have the usual semantics, with the following exception: the add and addAll methods
applied to container-managed collections in one-to-many relationships have a special semantics that is
determined by the referential integrity of one-to-many relationships.

o If the argument to the add method is already an element of a collection-valued relationship field of
the same relationship type as the target collection (as defined by the ejb-relation and ejb-
relationship-role deployment descriptor elements), it is removed from this first relationship and
added, in the same transaction context, to the target relationship (i.e., it is effectively moved from
one collection of the relationship type to the other). For example, if there is a one-to-many
relationship between field offices and sales representatives, adding a sales representative to a new
field office will have the effect of removing him or her from his or her current field office. If the

34 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

argument to the add method is not an element of a collection-valued relationship of the same
relationship type, it is simply added to the target collection and not removed from its current
collection, if any.

* The addA1l method, when applied to a target collection in a one-to-many relationship, has similar
semantics, applied to the members of its collection argument individually.

Note that in the case of many-to-many relationships, adding an element or elements to the contents
of a collection-valued cmr-field has no effect on the source collection, if any. For example, if there is
a many-to-many relationship between customers and sales representatives, a customer can be
added to the set of customers handled by a particular sales representative without affecting the set
of customers handled by any other sales representative.

When the java.util.Collection API is used to manipulate the contents of container-managed
relationship fields, the argument to any Collection method defined with a single Object parameter
must be of the element type of the collection defined for the target cmr-field. The argument for any
collection-valued parameter must be a java.util.Collection (or java.util.Set), all of whose elements
are of the element type of the collection defined for the target cmr-field. If an argument is not of the
correct type for the relationship, the container must throw the java.lang.IllegalArqumentException.

The Bean Provider should exercise caution when using an Iterator over a collection in a container-
managed relationship. In particular, the Bean Provider should not modify the container-managed
collection while the iteration is in progress in any way that causes elements to be added or removed,
other than by the java.util.Iterator.remove() method. If elements are added or removed from the
underlying container-managed collection used by an iterator other than by the
java.util.Iterator.remove() method, the container should throw the java.lang.IllegalStateException
on the next operation on the iterator.

The following example illustrates how operations on container-managed relationships that affect the
contents of a collection-valued cmr-field viewed through an iterator can be avoided. Because there is a
one-to-many relationship between field offices and sales representatives, adding a sales representative
to a new field office causes the sales representative to be removed from the current field office.

Final Jakarta® Enterprise Beans, Optional Features 35

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

nyOffice.getSalesreps();
sfOffice.getSalesreps();

Collection nySalesreps
Collection sfSalesreps

Iterator i = nySalesreps.iterator();
Salesrep salesrep;

// a wrong way to transfer the salesrep
while (i.hasNext()) {
salesrep = (Salesrep)i.next();
sfSalesreps.add(salesrep); // removes salesrep from nyOffice

// this is a correct and safe way to transfer the salesrep
while (i.hasNext()) {

salesrep = (Salesrep)i.next();

i.remove();

sfSalesreps.add(salesrep);

4.3.6.2. Use of Set Accessor Methods to Update Relationships

The semantics of a set accessor method, when applied to a collection-valued cmr-field, is also
determined by the referential integrity semantics associated with the multiplicity of the relationship.
The identity of the collection object referenced by a cmr-field does not change when a set accessor
method is executed.

In the case of a one-to-many relationship, if a collection of entity objects is assigned from a cmr-field of
in one instance to a cmr-field of the same relationship type in another instance, the objects in the
collection are effectively moved. The contents of the collection of the target instance are replaced with
the contents of the collection of the source instance, but the identity of the collection object containing
the instances in the relationship does not change. The source cmr-field references the same collection
object as before (i.e., the identity of the collection object is preserved), but the collection is empty.

The Bean Provider can thus use the set method to move objects between the collections referenced by
cmr-fields of the same relationship type in different instances. The set accessor method, when applied
to a cmr-field in a one-to-many relationship thus has the semantics of the java.util.Collection
methods clear, followed by addAll, applied to the target collection; and clear, applied to the source
collection. It is the responsibility of the container to transfer the contents of the collection instances in
the same transaction context.

Note that if the collection that is passed to the cmr setter method is an unmanaged collection (i.e.,
not itself the value of a collection-valued cmr-field), the same requirements apply in the case that
the collection contains entity objects that already participate in a one-to-many relationship of the
same relationship type as the target cmr-field.

36 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

In the following example, the telephone numbers associated with the billing address of an Order bean
instance are transferred to the shipping address. Billing address and shipping address are different
instances of the same local interface type, Address. Address is related to TelephoneNumber in a one-to-
many relationship. The example illustrates how a Bean Provider uses the set method to move a set of
instances.

public void changeTelephoneNumber() {
Address a = getShippingAddress();
Address b = getBillingAddress();
Collection ¢ = b.getTelephoneNumbers();
a.setTelephoneNumbers(b.getTelephoneNumbers());
if (c.isEmpty()) { // must be true...

}

In the case of a many-to-many relationship, if the value of a cmr-field is assigned to a cmr-field of the
same relationship type in another instance, the objects in the collection of the first instance are
assigned as the contents of the cmr-field of the second instance. The identities of the collection objects
referenced by the cmr-fields do not change. The contents of the collections are shared, but not the
collections themselves. The set accessor method, when applied to a cmr-field in a many-to-many
relationship thus has the semantics of the java.util.Collection methods clear, followed by addAll,
applied to the target collection.

For example, if there is a many-to-many relationship between customers and sales representatives,
assigning the set of customers of one sales representative to the another sales representative will result
in both sales representatives handling the same customers. If the second sales representative
originally handled a different group of customers, those customers will no longer be handled by that
sales representative.

public void shareCustomers(SalesRep rep) {
setCustomers(rep.getCustomers());
// the customers are shared among the sales reps

The following section, Assignment Rules for Relationships, defines the semantics of assignment for
relationships in further detail.

4.3.7. Assignment Rules for Relationships

This section defines the semantics of assignment and collection manipulation in one-to-one, one-to-
many, and many-to-many container-managed relationships.

The figures make use of two entity beans, with local interface types A and B. Instances with local

Final Jakarta® Enterprise Beans, Optional Features 37

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

interface type A are typically designated as al,...,an; instances with local interface type B are typically
designated as b1,...,bm. Interface A exposes accessor methods getB and setB for navigable relationships
with B: getB returns an instance of B or a collection of instances of B, depending on the multiplicity of
the relationship. Similarly, B exposes accessor methods getA and setA for navigable relationships with
A.

All changes in each subsection are assumed to be applied to the figure labeled “Before change” at the
beginning of the subsection (i.e., changes are not cumulative). The results of changes are designated
graphically as well as in conditional expressions expressed in the Java™ programming language.

4.3.7.1. One-to-one Bidirectional Relationships

A and B are in a one-to-one bidirectional relationship:

Before Change:

DD
DD

Before change:

B b1 = al.getB();
B b2 = a2.qgetB();
Change:

al.setB(a2.getB());

Expected result:

38 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

(b2.isIdentical(al.getB())) &&
(a2.getB() == null) &&
(b1.getA() == null) &&
(al.isIdentical(b2.getA()))

After Change:

4.3.7.2. One-to-one Unidirectional Relationships

A and B are in a one-to-one unidirectional relationship:

0.1 0.1

Before Change:

O—— D
O

Before change:

B b1 = al.getB();
B b2 = a2.qetB();
Change:

al.setB(a2.getB());

Final Jakarta® Enterprise Beans, Optional Features 39

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Expected result:

(b2.isIdentical(al.qgetB())) && (a2.getB() ==

After Change:

4.3.7.3. One-to-many Bidirectional Relationships

A and B are in a one-to-many bidirectional relationship:

0.1 0.*

Before Change:

e

Before change:

40 Jakarta® Enterprise Beans, Optional Features

Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Collection b1 = al.getB();
Collection b2 = a2.getB();
B b11, b12, ... , bin;
B b21, b22, ... , b2m;

Change:
al.setB(a2.getB());
Expected result:

(a2.getB().isEmpty()) &&
(b2.isEmpty()) &&

(b1 == al.getB()) &&

(b2 == a2.getB()) &&
(al.getB().contains(b21)) &&
(al.getB().contains(b22)) && ... &&
(al.qetB().contains(b2m)) &&
(b11.getA() == null) &&

(b12.getA() == null) && ... &&
(bIn.getA() == null) &&
(al.isIdentical(b21.getA())) &&
(al.isIdentical(b22.getA())) && ...&&
(al.isIdentical(b2m.getA()))

After Change:

Final Jakarta® Enterprise Beans, Optional Features 41

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Change:

b2m.setA(b1n.getA());

Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(bln)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) 88
(al.isIdentical(b11.getA())) &&
(al.isIdentical(b12.getA())) && ... &&
(al.isIdentical(bln.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) && ... &&
(a2.isIdentical(b2m_1.getA())) &&
(al.isIdentical(b2m.getA()))

After Change:

Change:

al.getB().add(b2m);

42 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(bln)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) &8
(al.isIdentical(b11.getA())) &&
(al.isIdentical(b12.getA())) && ... &&
(al.isIdentical(bln.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) && ... &&
(a2.isIdentical(b2m_1.getA())) &&
(al.isIdentical(b2m.getA()))

After Change:

Change:

al.getB().remove(b1n);

Expected result:

Final Jakarta® Enterprise Beans, Optional Features 43

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

(bTn.getA() == null) &&

(b1 == al.getB()) &&
(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n_1)) &&
I(b1.contains(b1n))

After Change:

4.3.7.4. One-to-many Unidirectional Relationships

44 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

A and B are in a one-to-many unidirectional relationship:

0.1 0.*

Before Change:

Before change:

Collection b1

al.getB();
Collection b2 = a2.getB();
B b11, b12, ... , bln;
B b21, b22, ... , b2m;

Change:

al.setB(a2.getB());

Expected result:

Final Jakarta® Enterprise Beans, Optional Features 45

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

(a2.qgetB().isEmpty()) &&
(b2.isEmpty()) &&

(b1 == al.getB()) &&

(b2 == a2.getB()) &&
(al.getB().contains(b21)) &&
(al.getB().contains(b22)) && ... &&
(al.qgetB().contains(b2m))

After Change:

Change:

al.getB().add(b2m);

Expected result:

(b1 == al.getB()) &&
(b1.contains(b2m))

46 Jakarta® Enterprise Beans, Optional Features

Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

After Change:

Change:

al.getB().remove(bin);

Expected result:

(al.getB().contains(b11)) &&
(al.getB().contains(b12)) && ... &&
(al.getB().contains(bin_1)) &&
I'(al.getB().contains(b1n)) &&

Final Jakarta® Enterprise Beans, Optional Features 47

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

After Change:

(S

%

4.3.7.5. Many-to-one Unidirectional Relationships

bl

48 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

A and B are in a many-to-one unidirectional relationship:

Before Change:

Before change:

B b11, b12, ... , bln;
B b21, b22, ... , b2m;

Change:

b1j.setA(b2k.getA());

Expected result:

Final Jakarta® Enterprise Beans, Optional Features 49

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

(al.isIdentical(b11.getA())) &&
(al.isIdentical(b12.getA())) &&

(a2.isIdentical(b1j.getA())) &&
(al.isIdentical(bln.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) &&
(a2.isIdentical(b2k.getA())) &&

(a2.isIdentical(b2m.getA()))

After Change:

4.3.7.6. Many-to-many Bidirectional Relationships

50 Jakarta® Enterprise Beans, Optional Features Final

A and B are in a many-to-many bidirectional relationship:

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Before Change:

(D

R

5

G
I

Before change the following holds:

Final

Jakarta® Enterprise Beans, Optional Features

51

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

(al.qgetB()
(al.qgetB()
(a2.getB()
(a2.qgetB()
(a2.qgetB()
(a3.qgetB()
(a3.qgetB()
(a3.qgetB()
(ad.qgetB()
(ad.qgetB()
(ad.qgetB()
(a5.getB()
(a5.getB()
(b1.getA()
(b1.getA()
(b2.getA()
(b2.getA()

(b3.getA()
(b3.getA()
(b3.getA()
(b4.qgetA()
(b4.getA()
(b4.qgetA()
(b5.getA()
(b5.getA()

Change:

.contains(b1)) &&
.contains(b2)) &&
.contains(b1)) &&
.contains(b2)) &&
.contains(b3)) &&
.contains(b2)) &&
.contains(b3)) &&
.contains(b4)) &&
.contains(b3)) &&
.contains(b4)) &&
.contains(bb)) &&
.contains(b4)) &&
.contains(bb)) &&
.contains(al)) &&
.contains(a2)) &&
.contains(al)) &&
.contains(a?)) &&
(b2.getA().
.contains(a?)) &&
.contains(a3)) &&
.contains(ad)) &&
.contains(ald)) &&
.contains(a4)) &&
.contains(ab)) &&
.contains(a4)) &&
.contains(ab)) &&

contains(a3)) &&

al.setB(a3.getB());

Expected result:

52 Jakarta® Enterprise Beans, Optional Features

Final

(al.
(al.
(al.
(a3.
(a3.
(a3.
(b1.
(b2.
(b2.
(b2.
(b3.
(b3.
(b3.
(b3.
(b4.
(b4.
(b4.
(b4.

getB().
getB()
getB()
getB()
getB()
getB()
getA()
getA()
getA()
getA()
getA()
getA()
getA()
getA()
getA()
getA()
getA()
getA()

contains(b2)) &&

.contains(b3)) &&
.contains(b4)) &&
.contains(b2)) &&
.contains(b3)) &&
.contains(b4)) &&
.contains(a?)) &&
.contains(al)) &&
.contains(a?)) &&
.contains(ald)) &&
.contains(al)) &&
.contains(a?)) &&
.contains(al3)) &&
.contains(ad)) &&
.contains(al)) &&
.contains(ald)) &&
.contains(ad)) &&
.contains(ah))

After Change:

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Change:

al.getB().add(b3);

Expected result:

Final

Jakarta® Enterprise Beans, Optional Features 53

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

(al.getB().contains(b1)) &&
(al.getB().contains(b2)) &&
(al.getB().contains(b3)) &&
(b3.getA().contains(al)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&

After Change:

Change:

a2.getB().remove(b2);

Expected result:

(a2.qgetB().contains(b1)) &&
(a2.getB().contains(b3)) &&
(b2.getA().contains(al)) &&
(b2.getA().contains(a3))

54 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

After Change:

4.3.7.7. Many-to-many Unidirectional Relationships

Final

E)— D
=
R
>
GI—D
5

Jakarta® Enterprise Beans, Optional Features

35

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

A and B are in a many-to-many unidirectional relationship:

Before Change:

(o)—(=)

EEine

5

G0
I

Before change the following holds:

(al.qgetB()
(al.qgetB()
(a2.qgetB()
(a2.qgetB()
(a2.getB()
(a3.qgetB()
(a3.qgetB()
(a3.qgetB()
(ad.qgetB()
(a4.getB()
(ad.qgetB()
(a5.getB()
(a5.qgetB()

Change:

.contains(b1)) &&
.contains(b2)) &&
.contains(b1)) &&
.contains(b2)) &&
.contains(b3)) &&
.contains(b2)) &&
.contains(b3)) &&
.contains(b4)) &&
.contains(b3)) &&
.contains(b4)) &&
.contains(bb)) &&
.contains(b4)) &&
.contains(bb)) &&

56 Jakarta® Enterprise Beans, Optional Features

Final

al.setB(a3.getB());

Expected Result:

(al.getB().contains(b2)) &&
(al.getB().contains(b3)) &&
(al.getB().contains(b4)) &&
(a3.qgetB().contains(b2)) &&
(a3.qgetB().contains(b3)) &&
(a3.getB().contains(b4)) &&

After Change:

Change:

al.getB().add(b3);

Expected result:

(al.getB().contains(b1)) &&
(al.getB().contains(b2)) &&
(al.getB().contains(b3))

Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Jakarta® Enterprise Beans, Optional Features 57

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

After Change:

G
e EiEe

Change:
a2.getB().remove(b2);
Expected result:

(a2.qgetB().contains(b1)) &&
(a2.getB().contains(b3))

58 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

After Change:

G

§
(e)— (=)

4.3.8. Collections Managed by the Container

The collections that are used in the representation of one-to-many and many-to-many container-
managed relationships are implemented and managed by the container. The following semantics
apply to these collections:

* It is the responsibility of the container to preserve the runtime identity of the collection objects
used in container-managed relationships.

» There is no constructor available to the Bean Provider for the container-managed collections.

* If there are no related values for a given container-managed relationship, the get accessor method
for that cmr-field returns an empty collection (and not null).

¢ It is the responsibility of the container to raise the java.lang.I1llegalArgumentException if the Bean
Provider attempts to assign null as the value of a collection-valued cmr-field by means of the set
accessor method.

* It is the responsibility of the container to ensure that when the java.util.Collection API is used to
manipulate the contents of container-managed relationship fields, the argument to any Collection
method defined with a single Object parameter must be of the element type of the collection
defined for the target cmr-field. The argument for any collection-valued parameter must be a
java.util.Collection (or java.util.Set), all of whose elements are of the element type of the
collection defined for the target cmr-field. If an argument is not of the correct type for the
relationship, the container must throw the java.lang.I1legalArgumentException.

Final Jakarta® Enterprise Beans, Optional Features 59

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

* It is the responsibility of the container to throw the java.lang.IllegalStateException if an attempt
is made to modify a container-managed collection corresponding to a multivalued cmr-field using
the java.util.Collection API outside of the transaction context in which the collection object was
initially materialized.

* It is the responsibility of the container to throw the java.lang.IllegalStateException if an attempt
is made to use a java.util.Iterator for a container-managed collection in a transaction context
other than that in which the iterator was obtained.

4.3.9. Non-persistent State

The Bean Provider may use instance variables in the entity bean instance to maintain non-persistent
state, e.g. a Jakarta Messaging connection.

The Bean Provider can use instance variables to store values that depend on the persistent state of the
entity bean instance, although this use is not encouraged. The Bean Provider should use the ejblLoad
method to resynchronize the values of any instance variables that depend on the entity bean’s
persistent state. In general, any non-persistent state that depends on the persistent state of an entity
bean should be recomputed during the ejbLoad method.

The Bean Provider should exercise care in passing the contents of instance variables as the arguments
or results of method invocations when local interfaces are used. In general, the Bean Provider should
avoid passing state that is maintained in instance variables as the argument or result of a local method
invocation.

4.3.10. The Relationship Between the Internal View and the Client View

In designing the entity bean, the Bean Provider should keep in mind the following:

» The classes that are exposed by the remote interface are decoupled from the persistence layer.
Instances of these classes are passed to and from the client by value.

» The classes that are exposed by the local interface of the bean may be tightly coupled to the bean’s
internal state. Instances of these classes are passed to and from the client by reference and may
therefore be modified by the client. The Bean Provider should exercise care in determining what is
exposed through the local interface of the bean.

4.3.10.1. Restrictions on Remote Interfaces

The following restrictions apply to the remote interface of an entity bean with container-managed
persistence.

* The Bean Provider must not expose the get and set methods for container-managed relationship
fields or the persistent Collection classes that are used in container-managed relationships through
the remote interface of the bean.

* The Bean Provider must not expose local interface types or local home interface types through the
remote interface or remote home interface of the bean.

60 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

* The Bean Provider must not expose the container-managed collection classes that are used for
relationships through the remote interface of the bean.

* The Bean Provider must not expose timers or timer handles through the remote interface of the
bean.

Dependent value classes can be exposed in the remote interface or remote home interface and can be
included in the client ejb-jar file.

The Bean Provider is free to expose get and set methods that correspond to cmp-fields of the entity
bean through the bean’s remote interface.

4.3.11. Mapping Data to a Persistent Store

This specification does not prescribe how the abstract persistence schema of an entity bean should be
mapped to a relational (or other) schema of a persistent store, or define how such a mapping is
described.

4.3.12. Example

Relationship Example illustrates an Order entity bean with relationships to line items and customers,
which are other entity beans within the same local scope. Product is indirectly related to Order by
means of the relationship between Lineltem and Product. Sample code for the OrderBean class follows
the figure.

Order-Customer Customer
<abstract> 1
OrderBean *

getOrderStatus
setOrderStatus
getLineStatus

setLineStatus

getCreditApproved Product
setCreditApproved
getCustomer 1
setCustomer

1 Product-Lineltem

Order-Li‘rm‘

* Lineltem

Figure 4. Relationship Example

package com.acme.order;

Final Jakarta® Enterprise Beans, Optional Features 61

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

// This example shows the implementation of OrderBean, the

// entity bean class for the OrderEJB entity bean. OrderEJB has
// container-managed relationships with the entity beans

// CustomerEJB and LineltemE]B.

// This example illustrates the use of local interfaces.

import java.util.Collection;

import java.util.Vector;

import java.util.Date;

import javax.naming.*;

public abstract class OrderBean implements jakarta.ejb.EntityBean {
private jakarta.ejb.EntityContext context;
// define status codes for processing
static final int BACKORDER = 1;
static final int SHIPPED = 2;
static final int UNSHIPPED = 3;
// get and set methods for the cmp fields

public abstract int getOrderStatus();
public abstract void setOrderStatus(int orderStatus);

public abstract boolean getCreditApproved();
public abstract void setCreditApproved(boolean creditapproved);

public abstract Date getOrderDate();
public abstract void setOrderDate(Date orderDate);

// get and set methods for the relationship fields

public abstract Collection getLineItems();
public abstract void setLineItems(Collection lineitems);

public abstract Customer getCustomer();
public abstract void setCustomer(Customer customer);

// business methods.

// addLineltem:

// This method is used to add a line item.

// 1t creates the lineitem object and adds it to the

// persistent managed relationship.

public void addLineItem(Product product,

62 Jakarta® Enterprise Beans, Optional Features Final

Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

int quantity,
Address address)
throws InsufficientInfoException
{
// create a new line item
if (validAddress(address)) {
// Address is a legacy class. It is a dependent value
// class that is available both in the client and in
// the entity bean, and is serializable.
// We will use the address as the value of a cmp field
// of lineltem.
try {
Context ic = new InitialContext();
LineItemLocalHome 1litemLocalHome =
(LineItemLocalHome)ic.lookup("LineltemE]B");
LineItem litem = litemLocalHome.create();

litem.setProduct(product);
litem.setQuantity(quantity);
litem.setTax(calculateTax(product.getPrice(),
quantity,
address));
litem.setStatus(UNSHIPPED);
// set the address for the line item to be shipped
litem.setAddress(address);
// The lineltem entity bean uses a dependent value
// class to represent the dates for the order status.
// This class holds shipment date, expected shipment
// date, credit approval date, and inventory
// dates which are internal to the order fullfillment
// process. Not all this information will be available
// to the client.
Dates dates = new Dates();
litem.setDates(dates);
getLineltems().add(Llitem);
} catch (Exception someexception) {}
} else {
throw new InsufficientInfoException();
}
}

// getOrderLineltems:
// This method makes a view of the lineitems that are in this
// order available in the client. It makes only the relevant
// information visible to the client and hides the internal
// details of the representation of the lineitem
public Collection getOrderLineltems() {

Vector clientlineitems = new Vector();

Jakarta® Enterprise Beans, Optional Features 63

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

Collection lineitems = getlLineItems();
java.util.Iterator iterator = lineitems.iterator();
// ClientLineItem is a value class that is used in
// the client view.
// The entity Bean Provider abstracts from the persistent
// representation of the line item to construct the client
// view.
ClientLineItem clitem;
while (iterator.hasNext()) {
LineItem litem = (LineItem)iterator.next();
clitem = new ClientLineItem();
// only the name of the product is available in the
// client view
clitem.setProductName(litem.getProduct().qgetName());
clitem.setQuantity(litem.getQuantity());
// the client view gets a specific descriptive message
// depending on the line item status.
clitem.setCurrentStatus(
statusCodeToString(litem.getStatus()));
// address is not copied to the client view.
// as this class includes other information with
// respect to the order handing that should not be
// available to the client. Only the relevant info
// is copied.
int lineitemStatus = litem.getStatus();
if (lineitemStatus == BACKORDER) {
clitem.setShipDate(
litem.getDates().getExpectedShipDate());
} else if (lineitemStatus == SHIPPED) {
clitem.setShipDate(
litem.getDates().getShippedDate());
}
//add the new line item
clientlineitems.add(clitem);
}
// return the value objects to the client
return clientlineitems;

}

// other methods internal to the entity bean class

// other jakarta.ejb.EntityBean methods

4.3.13. The Bean Provider’s View of the Deployment Descriptor

The persistent fields (cmp-fields) and relationships (cmr-fields) of an entity bean must be declared in

64 Jakarta® Enterprise Beans, Optional Features Final

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

the deployment descriptor.

The deployment descriptor provides the following information about the abstract persistence schemas
of entity beans and their container-managed relationships:

* An ejb-name element for each entity bean. The ejb-name must be a valid Java identifier and must be
unique within the ejb-name elements of the ejb-jar file.

* An abstract-schema-name element for each entity bean. The abstract-schema-name must be a valid
Java identifier and must be unique within the abstract-schema-name elements of the ejb-jar file. The
abstract-schema-name element is used in the specification of Enterprise Beans QL queries.

* A set of ejb-relation elements, each of which contains a pair of ejb-relationship-role elements to
describe the two roles in the relationship.

* Each ejb-relationship-role element describes a relationship role: its name, its multiplicity within a
relation, and its navigability. It specifies the name of the cmr-field that is used from the perspective
of the relationship participant. The cmr-field-type element must be specified if the type of the cmr-
field is java.util.Collection or java.util.Set. Each relationship role refers to an entity bean by
means of an ejb-name element contained in the relationship-role-source element.

The following example shows a deployment descriptor segment that defines the abstract persistence
schema for a set of related entity beans. The deployment descriptor elements for container-managed
persistence and relationships are described further in Deployment Descriptor.

<ejb-jar>
<enterprise-beans>

</enterprise-beans>
<relationships>
gll==
ONE-TO-MANY: Order Lineltem
-->
<ejb-relation>
<ejb-relation-name>Order-Lineltem</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
order-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>0rderEJB</ejb-name>
</relationship-role-source>
<emr-field>
<cmr-field-name>lineltems</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>

Final Jakarta® Enterprise Beans, Optional Features 65

4.3. The Entity Bean Provider’s View of Container-Managed Persistence

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>
lineitem-belongsto-order
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>
<ejb-name>LineItemEJ]B</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>order</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
</ejb-relation>
==
ONE-TO-MANY unidirectional relationship:
Product is not aware of its relationship with LineItem
-->
<ejb-relation>
<ejb-relation-name>Product-LineItem</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
product-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>ProductEJB</ejb-name>
</relationship-role-source>
<!-- since Product does not know about Lineltem
there is no cmr field in Product for accessing
Lineitem
-->
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>
lineitem-for-product
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>
<emr-field>
<cmr-field-name>product</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
</ejb-relation>

66 Jakarta® Enterprise Beans, Optional Features Final

4.4. The Entity Bean Component Contract

SEE
ONE-TO-MANY: Order Customer:
-->
<ejb-relation>
<ejb-relation-name>0rder-Customer</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
customer-has-orders
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>CustomerEJB</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>orders</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>
order-belongsto-customer
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>0rderEJB</ejb-name>
</relationship-role-source>
<cemr-field>
<cmr-field-name>customer</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>

</ejb-jar>

4.4. The Entity Bean Component Contract

This section specifies the container-managed persistence contract between an entity bean and its
container.

4.4.1. Runtime Execution Model of Entity Beans

This subsection describes the runtime model and the classes used in the description of the contract
between an entity bean and its container. Overview of the Entity Bean Runtime Execution Model
shows an overview of the runtime model. The client of an entity bean may be a local client or it may be

Final Jakarta® Enterprise Beans, Optional Features 67

4.4. The Entity Bean Component Contract

a remote client.

enterprise bean

1
1
1
1
1
1
1
1
1
1
1

enterprise bean 1 J

client

~

EJBL ocalObjects

enterprise bean

(EJBLocaI Homa — 2\ instances

A

enterprise bean

—/

classes provided by
Bean Provider and
container

container provided
classes

Figure 5. Overview of the Entity Bean Runtime Execution Model

An enterprise bean is an object whose class is provided by the Bean Provider. The class of an entity
bean with container-managed persistence is abstract. The concrete bean class is generated by the
Container Provider’s tools at deployment time. The container is also responsible for providing the
implementation of the java.util.Collection classes that are used in maintaining the container-
managed relationships of the entity bean.

An entity EJBObject or EJBLocalObject is an object whose class was generated at deployment time by
the Container Provider’s tools. A client never references an entity bean instance directly—a client
always references an entity EJBObject or EJBLocalObject whose class is generated by the Container
Provider’s tools. The entity EJBObject class implements an entity bean’s remote interface. The entity
EJBLocalObject class implements an entity bean’s local interface. A related entity bean never
references another entity bean instance directly—a related entity bean, like any other local client of an
entity bean, always references an entity EJBLocalObject whose class is generated by the Container
Provider’s tools.

An entity EJBHome or EJBLocalHome object provides life cycle operations (create, find, remove) for
its entity objects as well as home business methods, which are business methods that are not specific to

68 Jakarta® Enterprise Beans, Optional Features Final

4.4. The Entity Bean Component Contract

an entity bean instance. The class for the entity EJBHome or EJBLocalHome object is generated by the
Container Provider’s tools at deployment time. The entity EJBHome or EJBLocalHome object
implements the entity bean’s remote or local home interface that was defined by the Bean Provider.

4.4.2. Container Responsibilities

The following are the container responsibilities for the management of persistent state.

4.4.2.1. Container-Managed Fields

An entity bean with container-managed persistence relies on the container to perform persistent data
access on behalf of the entity bean instances. The container transfers data between an entity bean
instance and the underlying resource manager. The container also implements the creation, removal,
and lookup of the entity object in the underlying database.

The container transfers data between the entity bean and the underlying data source as a result of the
execution of the entity bean’s methods. Because of the requirement that all data access occur through
the accessor methods, the container can implement both eager and lazy loading and storing schemes.

The container is responsible for implementing the entity bean class by providing the implementation
of the get and set accessor methods for its abstract persistence schema. The container is allowed to use
Java serialization to store the container-managed persistent fields (cmp-fields).

The container must also manage the mapping between primary keys and EJBLocalObjects or
EJBODbjects. If both a remote and a local interface are specified for the entity bean, the container must
manage the mapping between EJBObjects and EJBLocalObjects.

Because the container is free to optimize the delivery of persistent data to the bean instance (for
example, by the use of lazy loading strategies), the contents of the entity bean instance and the
contents of container-managed collections may not be fully materialized.

4.4.2.2. Container-Managed Relationships

The container maintains the relationships among entity beans.

* It is the responsibility of the container to maintain the referential integrity of the container-
managed relationships, as described in Semantics of Assignment for Relationships, in accordance
with the semantics of the relationship type as specified in the deployment descriptor. For example,
if an entity bean is added to a collection corresponding to the container-managed relationship field
of another entity bean, the container-managed relationship field of the first entity bean must also
be updated by the container in the same transaction context.

* It is the responsibility of the container to throw the java.lang.IllegalArgumentException when the
argument to a set method in a relationship is an instance of the wrong relationship type or a
collection containing instances of the wrong type, or when an argument to a method of the
java.util.Collection API used to manipulate a collection-valued container-managed relationship

Final Jakarta® Enterprise Beans, Optional Features 69

4.5. Instance Life Cycle Contract Between the Bean and the Container

field is an instance of the wrong type or a collection that contains instances of the wrong type (see
Semantics of Assignment for Relationships).

It is the responsibility of the container to throw the java.lang.IllegalStateException when a
method of the java.util.Collection API is used to access a collection-valued cmr-field within a
transaction context other than the transaction context in which the cmr-field was initially
materialized. For example, if the container-managed collection is returned as the result of a local
interface method with transaction attribute RequiresNew, and the client attempts to access the
collection, the container must throw the I1legalStateException.

It is the responsibility of the container to throw the java.lang.IllegalStateException when a
java.util.Iterator is used to access a collection-valued cmr-field within a transaction context other
than the transaction context in which the iterator was initially obtained.

4.5. Instance Life Cycle Contract Between the Bean and
the Container

This section describes the part of the component contract between the entity bean and the container
that relates to the management of the entity bean instance’s life cycle.

4.5.1. Instance Life Cycle

70 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

does not instance throws
(it) € system exception
— from any method
1. newlnstance() 1. unsetEntityContext()
2. setEntityContext(ec)
g bFind<METHOD>(args)
Q J Q gjbSelect<METHOD>(args)
ejbHome<METHOD>(args) < pooled >
N
ejbCreate<M ETHOD>(args) ejbPassivate()
€ bPostCreate<M ETHOD>(args) gjbRemove()
gjbActivate()
ejbLoad()
elbStore()
business methods ejbSelect<METHOD>(args)

gjbTimeout(arg)

Figure 6. Life Cycle of an Entity Bean Instance.
An entity bean instance is in one of the following three states:

e It does not exist.

* Pooled state. An instance in the pooled state is not associated with any particular entity object

identity.

* Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

* An entity bean instance’s life starts when the container creates the instance using newlInstance.
The container then invokes the setEntityContext method to pass the instance a reference to the
EntityContext interface. The EntityContext interface allows the instance to invoke services provided
by the container and to obtain the information about the caller of a client-invoked method.

The instance enters the pool of available instances. Each entity bean has its own pool. While the
instance is in the available pool, the instance is not associated with any particular entity object
identity. All instances in the pool are considered equivalent, and therefore any instance can be
assigned by the container to any entity object identity at the transition to the ready state. While the
instance is in the pooled state, the container may use the instance to execute any of the entity
bean’s finder methods (shown as ejbFind<METHOD> in the diagram) or any of the entity bean’s home

Final Jakarta® Enterprise Beans, Optional Features 71

4.5. Instance Life Cycle Contract Between the Bean and the Container

methods (shown ejbHome<METHOD> in the diagram). The instance does not move to the ready state
during the execution of a finder or a home method. An ejbSelect<METHOD> method may be called by
an entity bean’s home method while the instance is in the pooled state.

* An instance transitions from the pooled state to the ready state when the container selects that
instance to service a client call to an entity object or an ejbTimeout method. There are two possible
transitions from the pooled to the ready state: through the ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods, or through the ejbActivate method. The container invokes the
ejbCreate<METHOD> and ejbPostCreate<METHOD> methods when the instance is assigned to an entity
object during entity object creation (i.e., when the client invokes a create method on the entity
bean’s home object). The container invokes the ejbActivate method on an instance when an
instance needs to be activated to service an invocation on an existing entity object—this occurs
because there is no suitable instance in the ready state to service the client’s call or the ejbTimeout
method.

* When an entity bean instance is in the ready state, the instance is associated with a specific entity
object identity. While the instance is in the ready state, the container can synchronize the state of
the instance with the state of the entity in the underlying data source whenever it determines the
need to, in the process invoking the ejblLoad and ejbStore methods zero or more times. A business
method can be invoked on the instance zero or more times. The ejbTimeout method can be invoked
on the instance zero or more times. Invocations of the ejblLoad and ejbStore methods can be
arbitrarily mixed with invocations of business methods and ejbTimeout method invocations. An
ejbSelect<METHOD> method can be called by a business method (or ejbLoad or ejbStore method or
ejbTimeout method) while the instance is in the ready state.

* The container can choose to passivate an entity bean instance within a transaction. To passivate an
instance, the container first invokes the ejbStore method to allow the instance to prepare itself for
the synchronization of the database state with the instance’s state, and then the container invokes
the ejbPassivate method to return the instance to the pooled state.

* Eventually, the container will transition the instance to the pooled state. There are three possible
transitions from the ready to the pooled state: through the ejbPassivate method, through the
ejbRemove method, and because of a transaction rollback for ejbCreate, ejbPostCreate, or ejbRemove
(not shown in Life Cycle of an Entity Bean Instance.). The container invokes the ejbPassivate
method when the container wants to disassociate the instance from the entity object identity
without removing the entity object. The container invokes the ejbRemove method when the
container is removing the entity object (i.e., when the client invoked the remove method on the
entity object’s component interface or a remove method on the entity bean’s home interface). If
ejbCreate, ejbPost(Create, or ejbRemove is called and the transaction rolls back, the container will
transition the bean instance to the pooled state.

* When the instance is put back into the pool, it is no longer associated with an entity object identity.
The container can assign the instance to any entity object within the same entity bean home.

* The container can remove an instance in the pool by calling the unsetEntityContext method on the
instance.

Notes:

72 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

1. The EntityContext interface passed by the container to the instance in the setEntityContext method
is an interface, not a class that contains static information. For example, the result of the
EntityContext.getPrimaryKey method might be different each time an instance moves from the
pooled state to the ready state, and the result of the getCallerPrincipal and isCallerInRole methods
may be different in each business method.

2. A RuntimeException thrown from any method of an entity bean class (including the business
methods and the callbacks invoked by the container) results in the transition to the “does not exist”
state. The container must not invoke any method on the instance after a RuntimeException has been
caught. From the caller’s perspective, the corresponding entity object continues to exist. The client
can continue accessing the entity object through its component interface because the container can
use a different entity bean instance to delegate the client’s requests. Exception handling is
described further in Exception Handling.

3. The container is not required to maintain a pool of instances in the pooled state. The pooling
approach is an example of a possible implementation, but it is not the required implementation.
Whether the container uses a pool orcnot has no bearing on the entity bean coding style.

4.5.2. Bean Provider’s Entity Bean Instance’s View

The following describes the entity bean instance’s view of the contract as seen by the Bean Provider:

The entity Bean Provider is responsible for implementing the following methods in the abstract entity
bean class:

* A public constructor that takes no arguments.

e public void setEntityContext(EntityContext ic);

A container uses this method to pass a reference to the EntityContext interface to the entity bean
instance. If the entity bean instance needs to use the EntityContext interface during its lifetime, it
must remember the EntityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Enterprise Beans Core
Contracts and Requirements document [2] Subsection “Handling of Methods that Run with an
unspecified transaction context” for how the container executes methods with an unspecified
transaction context). An identity of an entity object is not available during this method. The entity
bean must not attempt to access its persistent state and relationships using the accessor methods
during this method.

The instance can take advantage of the setEntityContext() method to allocate any resources that
are to be held by the instance for its lifetime. Such resources cannot be specific to an entity object
identity because the instance might be reused during its lifetime to serve multiple entity object
identities.

* public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.

Final Jakarta® Enterprise Beans, Optional Features 73

4.5. Instance Life Cycle Contract Between the Bean and the Container

This method executes with an unspecified transaction context. An identity of an entity object is not
available during this method. The entity bean must not attempt to access its persistent state and
relationships using the accessor methods during this method.

The instance can take advantage of the unsetEntityContext method to free any resources that are
held by the instance. (These resources typically had been allocated by the setEntityContext
method.)

* public PrimaryKeyClass ejbCreate<METHOD>(::+);

There are zero " or more ejbCreate<METHOD> methods, whose signatures match the signatures of the
create<METHOD> methods of the entity bean’s home interface. The container invokes an
ejbCreate<METHOD> method on an entity bean instance when a client invokes a matching
create<METHOD> method on the entity bean’s home interface.

The entity Bean Provider’s responsibility is to initialize the instance in the ejbCreate<METHOD>
methods from the input arguments, using the get and set accessor methods, such that when the
ejbCreate<METHOD> method returns, the persistent representation of the instance can be created. The
entity Bean Provider is guaranteed that the values that will be initially returned by the instance’s
get methods for container-managed fields will be the Java language defaults (e.g. 0 for integer, null
for pointers), except for collection-valued cmr-fields, which will have the empty collection (or set)
as their value. The entity Bean Provider must not attempt to modify the values of cmr-fields in an
ejbCreate<METHOD> method. This should be done in the ejbPostCreate<METHOD> method instead.

The entity object created by the ejbCreate<METHOD> method must have a unique primary key. This
means that the primary key must be different from the primary keys of all the existing entity
objects within the same home. However, it is legal to reuse the primary key of a previously
removed entity object. The implementation of the Bean Provider’s ejbCreate<METHOD> methods
should be coded to return a null. "

An ejbCreate<METHOD> method executes in the transaction context determined by the transaction
attribute of the matching create<METHOD> method. The database insert operations are performed by
the container within the same transaction context after the Bean Provider’s ejbCreate<METHOD>
method completes.

* public void ejbPostCreate<METHOD>(:**);

For each ejbCreate<METHOD> method, there is a matching ejbPostCreate<METHOD> method that has the
same input parameters but whose return type is void. The container invokes the matching
ejbPostCreate<METHOD> method on an instance after it invokes the ejbCreate<METHOD> method with
the same arguments. The instance can discover the primary key by calling getPrimaryKey on its
entity context object.

The entity object identity is available during the ejbPostCreate<METHOD> method. The instance may,
for example, obtain the component interface of the associated entity object and pass it to another
enterprise bean as a method argument.

74 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

The entity Bean Provider may use the ejbPostCreate<METHOD> to set the values of cmr-fields to
complete the initialization of the entity bean instance.

An ejbPostCreate<METHOD> method executes in the same transaction context as the previous
ejbCreate<METHOD> method.

* public void ejbActivate();

The container invokes this method on the instance when the container picks the instance from the
pool and assigns it to a specific entity object identity. The ejbActivate method gives the entity bean
instance the chance to acquire additional resources that it needs while it is in the ready state.

This method executes with an unspecified transaction context. The entity bean must not attempt to
access its persistent state or relationships using the accessor methods during this method.

The instance can obtain the identity of the entity object via the getPrimaryKey, getEJBLocalObject, or
getEJBObject method on the entity context. The instance can rely on the fact that the primary key
and entity object identity will remain associated with the instance until the completion of
ejbPassivate or ejbRemove.

* public void ejbPassivate();

The container invokes this method on an instance when the container decides to disassociate the
instance from an entity object identity, and to put the instance back into the pool of available
instances. The ejbPassivate method gives the instance the chance to release any resources that
should not be held while the instance is in the pool. (These resources typically had been allocated
during the ejbActivate method.)

This method executes with an unspecified transaction context. The entity bean must not attempt to
access its persistent state or relationships using the accessor methods during this method.

The instance can still obtain the identity of the entity object via the getPrimaryKey,
getEJBLocalObject, or getEJBObject method of the EntityContext interface.

* public void ejbRemove();

The container invokes the ejbRemove method on an entity bean instance in response to a client-
invoked remove operation on the entity bean’s home or component interface or as the result of a
cascade-delete operation. The instance is in the ready state when ejbRemove is invoked and it will be
entered into the pool when the method completes.

The entity Bean Provider can use the ejbRemove method to implement any actions that must be done
before the entity object’s persistent representation is removed.

The container synchronizes the instance’s state before it invokes the ejbRemove method. This means
that the state of the instance at the beginning of the ejbRemove method is the same as it would be at
the beginning of a business method.

Final Jakarta® Enterprise Beans, Optional Features 75

4.5. Instance Life Cycle Contract Between the Bean and the Container

This method and the database delete operation(s) execute in the transaction context determined by
the transaction attribute of the remove method that triggered the ejbRemove method. The instance
can still obtain the identity of the entity object via the getPrimaryKey, getEJBLocalObject, or
getEJBObject method of the EntityContext interface.

After the entity Bean Provider’s ejbRemove returns, and in the same transaction context, the
container removes the entity bean from all relationships in which it participates before removing
the entity object’s persistent representation.

Since the instance will be entered into the pool, the state of the instance at the end of this method
must be equivalent to the state of a passivated instance. This means that the instance must release
any resource that it would normally release in the ejbPassivate method.

* public void ejbload();

When the container needs to synchronize the state of an enterprise bean instance with the entity
object’s persistent state, the container calls the ejbLoad method.

The entity Bean Provider can assume that the instance’s persistent state has been loaded just
before the ejbLoad method is invoked. It is the responsibility of the Bean Provider to use the ejblLoad
method to recompute or initialize the values of any instance variables that depend on the entity
bean’s persistent state. In general, any transient state that depends on the persistent state of an
entity bean should be recalculated using the ejbLoad method. The entity bean can use the ejblLoad
method, for instance, to perform some computation on the values returned by the accessor
methods (for example, uncompressing text fields).

This method executes in the transaction context determined by the transaction attribute of the
business method or ejbTimeout method that triggered the ejbLoad method.

* public void ejbStore();

When the container needs to synchronize the state of the entity object’s persistent state with the
state of the enterprise bean instance, the container first calls the ejbStore method on the instance.

The entity Bean Provider should use the ejbStore method to update the instance using the accessor
methods before its persistent state is synchronized. For example, the ejbStore method may perform
compression of text before the text is stored in the database.

The Bean Provider can assume that after the ejbStore method returns, the persistent state of the
instance is synchronized.

This method executes in the same transaction context as the previous ejblLoad or ejbCreate method
invoked on the instance. All business methods or the ejbTimeout method invoked between the
previous ejblLoad or ejbCreate<METHOD> method and this ejbStore method are also invoked in the
same transaction context.

* public <primary key type or collection> ejbFind<METHOD>(::+);

76 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

The Bean Provider of an entity bean with container-managed persistence does not write the finder
(ejbFind<METHOD>) methods.

The finder methods are generated at the entity bean deployment time using the Container
Provider’s tools. The syntax for the Bean Provider’s specification of finder methods is described in
Enterprise Beans QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods.

* public <type> ejbHome<METHOD>(:**);

The container invokes this method on the instance when the container selects the instance to
execute a matching client-invoked <METHOD> home method. The instance is in the pooled state
(i.e., it is not assigned to any particular entity object identity) when the container selects the
instance to execute the ejbHome<METHOD> method on it, and it is returned to the pooled state when
the execution of the ejbHome<METHOD> method completes.

The ejbHome<METHOD> method executes in the transaction context determined by the transaction
attribute of the matching <METHOD> home method, as described in Enterprise Beans Core Contracts
and Requirements document [2] Subsection “Container-Managed Transaction Demarcation for
Business Methods”.

The entity Bean Provider provides the implementation of the ejbHome<METHOD> method. The entity
bean must not attempt to access its persistent state or relationships using the accessor methods
during this method because a home method is not specific to a particular bean instance.

* public abstract <type> ejbSelect<METHOD>(::+);

The Bean Provider may provide zero or more select methods. A select method is a query method
that is not directly exposed to the client in the home or component interface. The Bean Provider
typically calls a select method within a business method.

The Bean Provider defines the select methods as abstract methods.

The select methods are generated at the entity bean deployment time using the Container
Provider’s tools.

The syntax for the specification of select methods is described in Enterprise Beans QL: EJB 2.1
Query Language for Container-Managed Persistence Query Methods.

The ejbSelect<METHOD> method executes in the transaction context determined by the transaction
attribute of the invoking business method.

e public void ejbTimeout(:+);

The container invokes the ejbTimeout method on an instance when a timer for the instance has
expired. The ejbTimeout method notifies the instance of the time-based event and allows the
instance to execute the business logic to handle it.

The ejbTimeout method executes in the transaction context determined by its transaction attribute.

Final Jakarta® Enterprise Beans, Optional Features 77

4.5. Instance Life Cycle Contract Between the Bean and the Container

4.5.3. Container’s View

This subsection describes the container’s view of the state management contract. The container must
call the following methods:

* public void setEntityContext(ec);

The container invokes this method to pass a reference to the EntityContext interface to the entity
bean instance. The container must invoke this method after it creates the instance, and before it
puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point, the
EntityContext is not associated with any entity object identity.

* public void unsetEntityContext();

The container invokes this method when the container wants to reduce the number of instances in
the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.

* public PrimaryKey(Class ejbCreate<METHOD>(::+);
public void ejbPostCreate<METHOD>(::");

The container invokes these two methods during the creation of an entity object as a result of a
client invoking a create<METHOD> method on the entity bean’s home interface.

The container invokes the ejbCreate<METHOD> method whose signature matches the create<METHOD>
method invoked by the client.

Prior to invoking the ejbCreate<METHOD> method provided by the Bean Provider, the container must
ensure that the values that will be initially returned by the instance’s get methods for container-
managed fields will be the Java language defaults (e.g. 0 for integer, null for pointers), except for
collection-valued cmr-fields, which must have the empty collection (or set) as their value.

The container is responsible for calling the ejbCreate<METHOD> method, for obtaining the primary
key fields of the newly created entity object persistent representation, and for creating an entity
EJBObject reference and/or EJBLocalObject reference for the newly created entity object. The
container must establish the primary key before it invokes the ejbPostCreate<METHOD> method.

The entity object created by the ejbCreate<METHOD> method must have a unique primary key. This
means that the primary key must be different from the primary keys of all the existing entity
objects within the same home. However, it is legal to reuse the primary key of a previously
removed entity object. The container may, but is not required to, throw the DuplicateKeyException
on the Bean Provider’s attempt to create an entity object with a duplicate primary key. "

The container may create the representation of the entity in the database immediately, or it can
defer it to a later time (for example to the time after the matching ejbPostCreate<METHOD> has been

78 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

called, or to the end of the transaction), depending on the caching strategy that it uses.

The container then invokes the matching ejbPostCreate<METHOD> method with the same arguments
on the instance to allow the instance to fully initialize itself. The instance can discover the primary
key by calling the getPrimaryKey method on its entity context object.

Finally, the container returns the entity object’s remote interface (i.e., a reference to the entity
EJBObject) to the client if the client is a remote client or the entity object’s local interface (i.e., a
reference to the entity EJBLocalObject) if the client is a local client.

The container must invoke the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods and create
the representation of the persistent instance in the database in the transaction context determined
by the transaction attribute of the matching create<METHOD> method, as described in Enterprise
Beans Core Contracts and Requirements document [2] Subsection “Container-Managed Transaction
Demarcation for Business Methods”.

* public void ejbActivate();

The container invokes this method on an entity bean instance at activation time (i.e., when the
instance is taken from the pool and assigned to an entity object identity). The container must
ensure that the primary key of the associated entity object is available to the instance if the
instance invokes the getPrimaryKey, getEJBLocalObject, or getEJBObject method on its EntityContext
interface.

The container invokes this method with an unspecified transaction context.

Note that instance is not yet ready for the delivery of a business method. The container must still
invoke the ejbLoad method prior to a business method.

* public void ejbPassivate();

The container invokes this method on an entity bean instance at passivation time (i.e., when the
instance is being disassociated from an entity object identity and moved into the pool). The
container must ensure that the identity of the associated entity object is still available to the
instance if the instance invokes the getPrimaryKey, getEJBLocalObject, or getEJBObject method on its
entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first invoke
the ejbStore method on the instance before it invokes ejbPassivate on it.

* public void ejbRemove();

The container invokes the ejbRemove method in response to a client-invoked remove operation on
the entity bean’s home or component interface or as the result of a cascade-delete operation. The
instance is in the ready state when ejbRemove is invoked and it will be entered into the pool when
the method completes.

Final Jakarta® Enterprise Beans, Optional Features 79

4.5. Instance Life Cycle Contract Between the Bean and the Container

The container synchronizes the instance’s state before it invokes the ejbRemove method. This means
that the persistent state of the instance at the beginning of the ejbRemove method is the same as it
would be at the beginning of a business method (i.e., if the instance is not already synchronized
from the state in the database, the container must invoke ejblLoad before it invokes ejbRemove).

The container must ensure that the identity of the associated entity object is still available to the
instance in the ejbRemove method (i.e., the instance can invoke the getPrimaryKey, getEJBLocalObject,
or getEJBObject method on its EntityContext in the ejbRemove method).

After the entity Bean Provider’s ejbRemove method returns, and in the same transaction context, the
container removes the entity bean instance from all relationships in which it participates and then
removes the entity object’s persistent representation.

The container may delete the representation of the entity in the database immediately, or it can
defer it to a later time (for example to the end of the transaction), depending on the caching
strategy that it uses.

The container must ensure that the ejbRemove method and database delete operations are
performed in the transaction context determined by the transaction attribute of the invoked
remove method, as described in Enterprise Beans Core Contracts and Requirements document [2]
Subsection “Container-Managed Transaction Demarcation for Business Methods”.

* public void ejbload();

When the container needs to synchronize the state of an enterprise bean instance with the entity
object’s state in the database, the container calls the ejblLoad method. Depending on its caching
strategy, the container may first read the entity object’s state from the database, before invoking
the ejbLoad method, or it may use a lazy loading strategy in making this state visible to the instance.

The exact times that the container invokes ejblLoad depend on the configuration of the component
and the container, and are not defined by the Enterprise Beans architecture. Typically, the
container will call ejbLoad before the first business method within a transaction or before invoking
the ejbTimeout method on an instance.

The container must invoke this method in the transaction context determined by the transaction
attribute of the business method or ejbTimeout method that triggered the ejbLoad method.

* public void ejbStore();

When the container needs to synchronize the state of the entity object in the database with the
state of the enterprise bean instance, the container calls the ejbStore method on the instance. This
synchronization always happens at the end of a transaction, unless the bean is specified as read-
only (see Read-only Entity Beans). However, the container may also invoke this method when it
passivates the instance in the middle of a transaction, or when it needs to transfer the most recent
state of the entity object to another instance for the same entity object in the same transaction.

The container must invoke this method in the same transaction context as the previous ejbload,

80 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

ejbCreate<METHOD>, or ejbTimeout method invoked on the instance. All business methods or the
ejbTimeout method invoked between the previous ejblLoad or ejbCreate<METHOD> method and this
ejbStore method are also invoked in the same transaction context.

After the ejbStore method returns, the container may store the persistent state of the instance to
the database, depending on its caching strategy. If the container uses a lazy storing caching
strategy, it is the container’s responsibility to write the representation of the persistent object to the
database in the same transaction context as that of the ejbStore method.

* public <primary key type or collection> ejbFind<METHOD>(---);
The implementation of the ejbFind<METHOD> method is supplied by the container.

The container invokes the ejbFind<METHOD> method on an instance when a client invokes a
matching find<METHOD> method on the entity bean’s home interface. The container must pick an
instance that is in the pooled state (i.e., the instance is not associated with any entity object identity)
for the execution of the ejbFind<METHOD> method. If there is no instance in the pooled state, the
container creates one and calls the setEntityContext method on the instance before dispatching the
finder method.

The container must invoke the ejbFind<METHOD> method in the transaction context determined by
the transaction attribute of the matching find method, as described in Enterprise Beans Core
Contracts and Requirements document [2] Subsection “Container-Managed Transaction
Demarcation for Business Methods”.

The container is responsible for ensuring that updates to the states of all entity beans in the same
transaction context as the ejbFind<METHOD> method and whose abstract schema types are accessed
in the method’s Enterprise Beans QL query are visible in the results of the ejbFind<METHOD> method.
Before invoking the ejbFind<METHOD> method, the container must first synchronize the state of those
entity bean instances by invoking the ejbStore method on them. This requirement does not apply to
the ejbFindByPrimaryKey method. The results of the ejbFindByPrimaryKey method, however, must
reflect the entities that have been created or removed within the same transaction context.

After the ejbFind<METHOD> method completes, the instance remains in the pooled state. The
container may, but is not required to, immediately activate the objects that were located by the
finder using the transition through the ejbActivate method.

If the ejbFind<METHOD> method is declared to return a single primary key, the container creates an
entity EJBObject (EJBLocalObject) reference for the primary key and returns it to the client (local
client). If the ejbFind<METHOD> method is declared to return a collection of primary keys, the
container creates a collection of entity EJBObject (EJBLocalObject) references for the primary keys
returned from the ejbFind<METHOD> method, and returns the collection to the client (local client).

The implementations of the finder methods are generated at the entity bean deployment time using
the Container Provider’s tools.

* public <type> ejbSelect<METHOD>(:*);

Final Jakarta® Enterprise Beans, Optional Features 81

4.5. Instance Life Cycle Contract Between the Bean and the Container

A select method is a query method that is not directly exposed to the client in the home or
component interface. The Bean Provider typically calls a select method within a business method
or home method.

A select method executes in the transaction context determined by the transaction attribute of the
invoking business method.

The container is responsible for ensuring that all updates to the states of all entity beans in the
same transaction context as the ejbSelect<METHOD> method and whose abstract schema types are
accessed in the Enterprise Beans QL query for the ejbSelect<METHOD> method are visible in the
results of the ejbSelect<METHOD> method by invoking the ejbStore method on those entity bean
instances.

The implementations of the select methods are generated at the entity bean deployment time using
the Container Provider’s tools.

* public <type> ejbHome<METHOD>(:*);

The container invokes the ejbHome<METHOD> method on an instance when a client invokes a
matching <METHOD> home method on the entity bean’s home interface. The container must pick
an instance that is in the pooled state (i.e., the instance is not associated with any entity object
identity) for the execution of the ejbHome<METHOD> method. If there is no instance in the pooled state,
the container creates one and calls the setEntityContext method on the instance before dispatching
the home method.

After the ejbHome<METHOD> method completes, the instance remains in the pooled state.

The container must invoke the ejbHome<METHOD> method in the transaction context determined by
the transaction attribute of the matching <METHOD> home method, as described in Enterprise
Beans Core Contracts and Requirements document [2] Subsection “Container-Managed Transaction
Demarcation for Business Methods”.

* public void ejbTimeout(:+);

The container invokes the ejbTimeout method on the instance when a timer with which the entity
has been registered expires. If there is no suitable instance in the ready state, the container must
activate an instance, invoking the ejbActivate method and transitioning it to the ready state.

The container invokes the ejbTimeout method in the context of a transaction determined by its
transaction attribute.

4.5.4. Read-only Entity Beans

Compliant implementations of this specification may optionally support read-only entity beans. A read-
only entity bean is an entity bean whose instances are not intended to be updated and/or created by
the application. Read-only beans are best suited for situations where the underlying data never
changes or changes infrequently.

82 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

Containers that support read-only beans do not call the ejbStore method on them. The ejbLoad method
should typically be called by the container when the state of the bean instance is initially loaded from
the database, or at designated refresh intervals. "

If a read-only bean is used, the state of such a bean should not be updated by the application, and the
behavior is unspecified if this occurs. "”

Read-only beans are designated by vendor-specific means that are outside the scope of this
specification, and their use is therefore not portable.

4.5.5. The EntityContext Interface

A container provides the entity bean instances with an EntityContext, which gives the entity bean
instance access to the instance’s context maintained by the container. The EntityContext interface has
the following methods:

» The getEJBObject method returns the entity bean’s remote interface.

* The getEJBHome method returns the entity bean’s remote home interface.

* The getEJBLocalObject method returns the entity bean’s local interface.

* The getEJBLocalHome method returns the entity bean’s local home interface.

* The getCallerPrincipal method returns the java.security.Principal that identifies the invoker.

» The isCallerInRole method tests if the entity bean instance’s caller has a particular role.

* The setRollbackOnly method allows the instance to mark the current transaction such that the only
outcome of the transaction is a rollback.

* The getRollbackOnly method allows the instance to test if the current transaction has been marked
for rollback.

* The getPrimaryKey method returns the entity bean’s primary key.
e The getTimerService method returns the jakarta.ejb.TimerService interface.

» The getUserTransaction method returns the jakarta.transaction.UserTransaction interface. Entity
bean instances must not call this method.

* The lookup method enables the entity bean to look up its environment entries in the JNDI naming
context.

4.5.6. Operations Allowed in the Methods of the Entity Bean Class

Operations Allowed in the Methods of an Entity Bean defines the methods of an entity bean class in
which the enterprise bean instances can access the methods of the jakarta.ejb.EntityContext
interface, the java:comp/env environment naming context, resource managers, TimerService and Timer
methods, the EntityManager and EntityManagerFactory methods, and other enterprise beans.

If an entity bean instance attempts to invoke a method of the EntityContext interface, and the access is

Final Jakarta® Enterprise Beans, Optional Features 83

4.5. Instance Life Cycle Contract Between the Bean and the Container

not allowed in Operations Allowed in the Methods of an Entity Bean, the container must throw the

java.lang.I1legalStateException.

If a entity bean instance attempts to invoke a method of the TimerService or Timer interface and the
access is not allowed in Operations Allowed in the Methods of an Entity Bean, the container must
throw the java.lang.I1legalStateException.

If an entity bean instance attempts to access a resource manager, an enterprise bean, an entity
manager or entity manager factory, and the access is not allowed in Operations Allowed in the
Methods of an Entity Bean, the behavior is undefined by the Enterprise Beans architecture.

Table 1. Operations Allowed in the Methods of an Entity Bean

Bean method
constructor

setEntityContext
unsetEntityContext

ejbCreate

ejbPostCreate

Bean method can perform the following operations

EntityContext methods: getEJBHome, getEJBLocalHome, Tookup
JNDI access to java:comp/env

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole,
setRollbackOnly, getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole,
setRollbackOnly, getEJBObject, getEJBLocalObject, getPrimaryKey,
getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

84 Jakarta® Enterprise Beans, Optional Features

Final

Bean method

ejbRemove

ejpHome

ejbActivate
ejbPassivate

ejbLoad
ejbStore

business method from
component interface

Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

Bean method can perform the following operations

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole,
setRollbackOnly, getEJBObject, getEJBLocalObject, getPrimaryKey,
getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRol1lbackOnly, isCallerInRole,
setRollbackOnly, getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

EntityContext methods: getEJBHome, getEJBLocalHome, getEJBObject,
getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole,
setRollbackOnly, getEJBObject, getEJBLocalObject, getPrimaryKey,
getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole,
setRollbackOnly, getEJBObject, getEJBLocalObject, getPrimaryKey,
getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

Jakarta® Enterprise Beans, Optional Features 85

4.5. Instance Life Cycle Contract Between the Bean and the Container

Bean method Bean method can perform the following operations

EntityContext methods: getEJBHome, getEJBLocalHome,
getRollbackOnly, setRollbackOnly, getCallerPrincipal,
isCallerInRole, getEJBObject, getEJBLocalObject, getPrimaryKey,
getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access

ejbTimeout EntityManager access

Additional restrictions:

* The getRollbackOnly and setRollbackOnly methods of the EntityContext interface should be used
only in the enterprise bean methods that execute in the context of a transaction. The container
must throw the java.lang.IllegalStateException if the methods are invoked while the instance is
not associated with a transaction.

Reasons for disallowing operations:

* Invoking the getEJBObject, getEJBLocalObject, and getPrimaryKey methods is disallowed in the entity
bean methods in which there is no entity object identity associated with the instance.

 Invoking the getEJBObject and getEJBHome methods is disallowed if the entity bean does not define a
remote client view.

* Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the entity bean does
not define a local client view.

* Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the entity bean
methods for which the container does not have a meaningful transaction context.

» Accessing resource managers and enterprise beans, including accessing the persistent state of an
entity bean instance, is disallowed in the entity bean methods for which the container does not
have a meaningful transaction context or client security context.

4.5.7. Finder Methods

An entity bean’s home interface defines one or more finder methods ", one for each way to find an

entity object or collection of entity objects within the home. The name of each finder method starts
with the prefix “find”, such as findLargeAccounts. The arguments of a finder method are used in the
implementation of the query for the finder method to locate the requested entity objects.

Every finder method except findByPrimaryKey(key) must be associated with a query element in the
deployment descriptor. The entity Bean Provider declaratively specifies the Enterprise Beans QL finder
query and associates it with the finder method in the deployment descriptor. A finder method is

86 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

normally characterized by an Enterprise Beans QL query string specified in the query element.
Enterprise Beans QL is described in Enterprise Beans QL: EJB 2.1 Query Language for Container-
Managed Persistence Query Methods. A compliant implementation of this specification is required to
support Enterprise Beans QL as defined in Enterprise Beans QL: EJB 2.1 Query Language for Container-
Managed Persistence Query Methods for use with finder methods.

In the case that both the remote home interface and local home interface define a finder method with
the same name and argument types, the Enterprise Beans QL query string specified by the query
element defines the semantics of both methods.

4.5.7.1. Single-Object Finder Methods

Some finder methods (such as findByPrimaryKey) are designed to return at most one entity object. For
single-object finders, the result type of a find<METHOD> method defined in the entity bean’s remote home
interface is the entity bean’s remote interface, and the result type of the find<METHOD> method defined
in the entity bean’s local home interface is the entity bean’s local interface.

The following code illustrates the definition of a single-object finder defined on the remote home
interface.

// Entity’s home interface
public interface AccountHome extends jakarta.ejb.EJBHome {

Account findByPrimaryKey(AccountPrimaryKey primkey)
throws FinderException, RemoteException;

Note that a finder method defined on the local home interface must not throw the RemoteException.

In general, when defining a single-object finder method other than findByPrimaryKey, the entity Bean
Provider should be sure that the finder method will always return only a single entity object. This may
occur, for example, if the Enterprise Beans QL query string that is used to specify the finder query
includes an equality test on the entity bean’s primary key fields. If the entity Bean Provider uses an
unknown primary key class (see Special Case: Unknown Primary Key Class), the Bean Provider will
typically define the finder method as a multi-object finder.

Note that a single-object finder method may return a null value. If the result set of the query consists of
a single null value, the container must return the null value as the result of the method. If the result set
of a query for a single-object finder method contains more than one value (Whether non-null, null, or a
combination), the container must throw the FinderException from the finder method. If the result set of
the query contains no values, the container must throw the ObjectNotFoundException.

Final Jakarta® Enterprise Beans, Optional Features 87

4.5. Instance Life Cycle Contract Between the Bean and the Container

4.5.7.2. Multi-Object Finder Methods

Some finder methods are designed to return multiple entity objects. For multi-object finders defined on
the entity bean’s local home interface, the result type of the find<METHOD> method is a collection of
objects implementing the entity bean’s local interface. For multi-object finders defined on the entity
bean’s remote home interface, the result type of the find<METHOD> method is a collection of objects
implementing the entity bean’s remote interface.

The Bean Provider uses the java.util.Collection interface to define a collection type for the result type
of a finder method for an entity bean with container-managed persistence.

The collection of values returned by the container may contain duplicates if DISTINCT is not specified
in the SELECT clause of the query for the finder method.

The collection of values returned by the container may contain null values if the finder method returns
the values of a cmr-field and null values are not eliminated by the query.

A portable client program must use the PortableRemoteObject.narrow method to convert the objects
contained in the collections returned by a finder method on the entity bean’s remote home interface to
the entity bean’s remote interface type.

The following is an example of a multi-object finder method defined on the remote home interface:

// Entity’s home interface
public interface AccountHome extends jakarta.ejb.EJBHome {

java.util.Collection findlLargeAccounts(double limit)
throws FinderException, RemoteException;

Note that if this finder method were defined on the local home interface, it would not throw the
RemoteException.

4.5.8. Select Methods

Select methods are query methods for use by the Bean Provider within an entity bean instance. Unlike
finder methods, select methods are not specified in the entity bean’s home interface. A select method is
an abstract method defined by the Bean Provider on an entity bean class. A select method must not be
exposed in the home or component interface of an entity bean.

The semantics of a select method, like those of a finder method, are defined by an Enterprise Beans QL
query string. A select method is similar to a finder method, but unlike a finder method, but it can
return values that correspond to any cmp- or cmr-field type.

88 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

Every select method must be associated with a query element in the deployment descriptor. The entity
Bean Provider declaratively specifies the Enterprise Beans QL query and associates it with the select
method in the deployment descriptor. A select method is normally characterized by an Enterprise
Beans QL query string specified in the query element. Enterprise Beans QL is described in Enterprise
Beans QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods. A compliant
implementation of this specification is required to support Enterprise Beans QL as defined in
Enterprise Beans QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods for
use with select methods.

Typically an ejbSelect<METHOD> method that returns entity objects returns these as EJBLocalObjects. If
the ejbSelect<METHOD> method returns an EJBObject or collection of EJBObjects, the Bean Provider must
specify the value of the result-type-mapping element in the query deployment descriptor element for
the select method as Remote.

An ejbSelect<METHOD> is not based on the identity of the entity bean instance on which it is invoked.
However, the Bean Provider can use the primary key of an entity bean as an argument to an
ejbSelect<METHOD> to define a query that is logically scoped to a particular entity bean instance.

The following table illustrates the semantics of finder and select methods.

Table 2. Comparison of Finder and Select Methods

Finder methods Select methods
method find<METHOD> ejbSelect<METHOD>
visibility exposed to client internal to entity bean class

arbitrary bean instance in pooled state instance: current instance (could be
instance bean instance in pooled state or ready
state)

EJBObjects or EJBLocalObjects of the EJBObjects, EJBLocalObjects, or cmp-

return value same type as the entity bean field types

4.5.8.1. Single-Object Select Methods

Some select methods are designed to return at most one value. In general, when defining a single-
object select method, the entity Bean Provider must be sure that the select method will always return
only a single object or value. If the query specified by the select method returns multiple values of the
designated type, the container must throw the FinderException.

Note that a single-object select method may return a null value. If the result set of the query consists of
a single null value, the container must return the null value as the result of the method. If the result set
of a query for a single-object select method contains more than one value (whether non-null, null, or a
combination), the container must throw the FinderException from the select method. If the result set of
the query contains no values, the contain must throw the ObjectNotFoundException.

The Bean Provider will typically define a select method as a multi-object select method.

Final Jakarta® Enterprise Beans, Optional Features 89

4.5. Instance Life Cycle Contract Between the Bean and the Container

4.5.8.2. Multi-Object Select Methods

Some select methods are designed to return multiple values. For these multi-object select methods, the
result type of the ejbSelect<METHOD> method is a collection of objects.

The Bean Provider uses the java.util.Collection interface or java.util.Set interface to define a
collection type for the result type of a select method. The type of the elements of the collection is
determined by the type of the SELECT clause of the corresponding Enterprise Beans QL query. If the
Bean Provider uses the java.util.Collection interface, the collection of values returned by the
container may contain duplicates if DISTINCT is not specified in the SELECT clause of the query. If a
query for a select method whose result type is java.util.Set does not specify DISTINCT in its SELECT
clause, the container must interpret the query as if SELECT DISTINCT had been specified.

The collection of values returned by the container may contain null values if the select method returns
the values of a cmr-field or cmp-field and null values are not eliminated by the query.

The following is an example of a multi-object select method definition in the OrderBean class:

// OrderBean implementation class
public abstract class OrderBean implements jakarta.ejb.EntityBean {

public abstract java.util.Collection
ejbSelectAl10rderedProducts(Customer customer)
throws FinderException;
// internal finder method to find all products ordered

4.5.9. Timer Notifications

An entity bean can be registered with the Enterprise Beans timer service for time-based event
notifications if it implements the jakarta.ejb.TimedObject interface. The container invokes the bean
instance’s ejbTimeout method when a timer for the bean has expired. See Timer Service.

4.5.10. Standard Application Exceptions for Entities
The Enterprise Beans specification defines the following standard application exceptions:

* jakarta.ejb.CreateException

* jakarta.ejb.DuplicateKeyException

* jakarta.ejb.FinderException

* jakarta.ejb.ObjectNotFoundException

* jakarta.ejb.RemoveException

This section describes the use of these exceptions by entity beans with container-managed persistence.

90 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

4.5.10.1. CreateException

From the client’s perspective, a CreateException (or a subclass of CreateException) indicates that an
application level error occurred during a create<METHOD> operation. If a client receives this exception,
the client does not know, in general, whether the entity object was created but not fully initialized, or
not created at all. Also, the client does not know whether or not the transaction has been marked for
rollback. (However, the client may determine the transaction status using the UserTransaction interface
or the setRollbackOnly method of the EJBContext interface.)

Both the container and the Bean Provider may throw the CreateException (or subclass of
CreateException) from the create<METHOD>, ejbCreate<METHOD> and ejbPostCreate<METHOD> methods to
indicate an application-level error from the create or initialization operation. Optionally, the container
or Bean Provider may mark the transaction for rollback before throwing this exception.

The container or Bean Provider is encouraged to mark the transaction for rollback only if data integrity
would be lost if the transaction were committed by the client. Typically, when a (reateException is
thrown, it leaves the database in a consistent state, allowing the client to recover. For example, the
ejbCreate<METHOD> method may throw the CreateException to indicate that the some of the arguments to
the create<METHOD> method are invalid.

The container treats the CreateException as any other application exception. See Container Provider
Responsibilities.

4.5.10.2. DuplicateKeyException

The DuplicateKeyException is a subclass of CreateException. It may be thrown by the container to
indicate to the client or local client that the entity object cannot be created because an entity object
with the same key already exists. The unique key causing the violation may be the primary key, or
another key defined in the underlying database.

Normally, the container should not mark the transaction for rollback before throwing the exception.

When the client or local client receives a DuplicateKeyException, the client knows that the entity was
not created, and that the transaction has not typically been marked for rollback.

4.5.10.3. FinderException

From the client’s perspective, a FinderException (or a subclass of FinderException) indicates that an
application level error occurred during the find operation. Typically, the transaction has not been
marked for rollback because of the FinderException.

The container throws the FinderException (or subclass of FinderException) from the implementation of
a finder or select method to indicate an application-level error in the finder or select method. The
container should not, typically, mark the transaction for rollback before throwing the FinderException.

The container treats the FinderException as any other application exception. See Container Provider
Responsibilities.

Final Jakarta® Enterprise Beans, Optional Features 91

4.5. Instance Life Cycle Contract Between the Bean and the Container

4.5.10.4. ObjectNotFoundException

The ObjectNotFoundException is a subclass of FinderException. The container throws the
ObjectNotFoundException from the implementation of a finder or select method to indicate that the
requested object does not exist.

Only single-object finder or select methods (see Finder Methods and Select Methods) should throw this
exception. Multi-object finder or select methods must not throw this exception. Multi-object finder or
select methods should return an empty collection as an indication that no matching objects were
found.

4.5.10.5. RemoveException

From the client’s perspective, a RemoveException (or a subclass of RemoveException) indicates that an
application level error occurred during a remove operation. If a client receives this exception, the
client does not know, in general, whether the entity object was removed or not. The client also does not
know if the transaction has been marked for rollback. (However, the client may determine the
transaction status using the UserTransaction interface.)

The container or Bean Provider throws the RemoveException (or subclass of RemoveException) from a
remove method to indicate an application-level error from the entity object removal operation.
Optionally, the container or Bean Provider may mark the transaction for rollback before throwing this
exception.

The container or Bean Provider is encouraged to mark the transaction for rollback only if data integrity
would be lost if the transaction were committed by the client. Typically, when a RemoveException is
thrown, it leaves the database in a consistent state, allowing the client to recover.

The container treats the RemoveException as any other application exception. See Container Provider
Responsibilities.

4.5.11. Commit Options

The Entity Bean protocol is designed to give the container the flexibility to select the disposition of the
instance state at transaction commit time. This flexibility allows the container to optimally manage the
association of an entity object identity with the enterprise bean instances.

The container can select from the following commit-time options:

* Option A: The container caches a “ready” instance between transactions. The container knows that
the bean instance has exclusive access to the state of the object in the persistent storage. Therefore,
the container does not have to synchronize the instance’s state from the persistent storage at the
beginning of the next transaction or have to verify that the instance’s state is in sync with the
persistent storage at the beginning of the next transaction.

» Option B: The container caches a “ready” instance between transactions. In contrast to Option A, in
this option the instance may not have exclusive access to the state of the object in the persistent

92 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

storage. Therefore, the container must synchronize the instance’s state from the persistent storage
at the beginning of the next transaction if the instance’s state in the persistent storage has changed.
Containers using optimistic concurrency control strategies may instead choose to rollback the
transaction if this invariant has not been met: The container must ensure that in order for a
transaction to be successfully committed, the transaction must only operate on instance data that is
in sync with the persistent storage at the beginning of the transaction.

* Option C: The container does not cache a “ready” instance between transactions. The container
returns the instance to the pool of available instances after a transaction has completed.

Variants of these strategies that capture the same semantics from the Bean Provider’s viewpoint may
be employed, e.g., to optimize data access.

The following illustrative lazy loading strategies are consistent with the intent of these requirements:

 If ejbload is called at the beginning of the transaction without the instance’s persistent state having
been loaded from the persistent storage, the persistent state must be faulted in when ejbload
causes the bean’s getter accessor methods to be invoked. If the ejbLoad method is empty, data may
be faulted in as needed in the course of executing the businesss methods of the bean.

« If the instance’s persistent state is cached between transactions, ejbLoad need not be called and
persistent data need not be faulted in from the persistent storage (unless it has not previously been
accessed). In this case, because ejblLoad has been previously called when the instance was entered
into the ready state for the first time, and because the bean instance’s state is consistent with its
persistent state, there is no need to call ejbLoad unless the instance’s state in the persistent storage
has changed. In this case, the container must ensure that in order for the transaction to be
successfully committed, the instance’s persistent state was in sync with the persistent storage at the
beginning of the transaction.

The following table provides a summary of the commit-time options.

Table 3. Summary of Commit-Time Options

Write instance state to Instance staysready Instance state remains

database valid
Option A Yes Yes Yes
Option B Yes Yes No
Option C Yes No No

Note that the container synchronizes the instance’s state with the persistent storage at transaction
commit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity bean
will work correctly regardless of the commit-time option chosen by the container. The Bean Provider
writes the entity bean in the same way.

Final Jakarta® Enterprise Beans, Optional Features 93

4.5. Instance Life Cycle Contract Between the Bean and the Container

Note: The Bean Provider relies on the ejbload method to be invoked in order to resynchronize the
bean’s transient state with its persistent state. It is the responsibility of the container to call the
ejblLoad method at the beginning of a new transaction if the bean instance’s persistent data has
changed. "”

4.5.12. Concurrent Access from Multiple Transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about
concurrent access from multiple transactions. The Bean Provider may assume that the container will
ensure appropriate synchronization for entity objects that are accessed concurrently from multiple
transactions.

The container typically uses one of the following implementation strategies to achieve proper
synchronization. (These strategies are illustrative, not prescriptive.)

» The container activates multiple instances of the entity bean, one for each transaction in which the
entity object is being accessed. The transaction synchronization is performed by the underlying
database during the accessor method calls performed by the business methods, the ejbTimeout
method, and by the ejbload, ejbCreate<METHOD>, ejbStore, and ejbRemove methods. The commit-time
options B and C in Commit Options apply to this type of container.

Container

. /enterprise bean instances
Client 1 T 1

(Account 100) - -
inTX 1
(Entity obj ect)/l T

Account 100 Account 100
\(Account 100 //

inTX 2

Figure 7. Multiple Clients Can Access the Same Entity Object Using Multiple Instances

With this strategy, the type of lock acquired by ejblLoad or get accessor method (if a lazy loading cache
management strategy is used) leads to a trade-off. If ejblLoad or the accessor method acquires an exclusive
lock on the instance’s state in the database, the throughput of read-only transactions could be impacted.
Ifejbload or the accessor method acquires a shared lock and the instance is updated, then either ejbStore
or a set accessor method will need to promote the lock to an exclusive lock (which may cause a deadlock
if it happens concurrently under multiple transactions), or, if the container uses an optimistic cache
concurrency control strategy, the container will need to validate the state of the cache against the
database at transaction commit (which may result in a rollback of the transaction).

It is expected that containers will provide deployment-time configuration options that will allow

94 Jakarta® Enterprise Beans, Optional Features Final

4.5. Instance Life Cycle Contract Between the Bean and the Container

control to be exercised over the logical transaction isolation levels that their caching strategies provide.

* The container acquires exclusive access to the entity object’s state in the database. The container
activates a single instance and serializes the access from multiple transactions to this instance. The
commit-time option A in Commit Options applies to this type of container.

Container

. /enterprise bean instances
(Account 100> - -
inTX 1
(Entity obj ect)/| T

Account 100 Account 100

/)(2' container blocks Client 2
Client 2 \until Client 1 finishes /

Figure 8. Multiple Clients Can Access the Same Entity Object Using Single Instance

4.5.13. Non-reentrant and Re-entrant Instances

An entity Bean Provider can specify that an entity bean is non-reentrant. If an instance of a non-
reentrant entity bean executes a client request in a given transaction context, and another request
with the same transaction context arrives for the same entity object, the container will throw an
exception to the second request. This rule allows the Bean Provider to program the entity bean as
single-threaded, non-reentrant code.

The functionality of entity beans with container-managed persistence may require loopbacks in the
same transaction context. An example of a loopback is when the client calls entity object A, A calls
entity object B, and B calls back A in the same transaction context. The entity bean’s method invoked
by the loopback shares the current execution context (which includes the transaction and security
contexts) with the Bean’s method invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the container must reject
an attempt to re-enter the instance via the entity bean’s component interface while the instance is
executing a business method. (This can happen, for example, if the instance has invoked another
enterprise bean, and the other enterprise bean tries to make a loopback call.) If the attempt is made to
reenter the instance through the remote interface, the container must throw the
java.rmi.RemoteException to the caller. If the attempt is made to reenter the instance through the local
interface, the container must throw the jakarta.ejb.EJBException to the caller. The container must
allow the call if the Bean’s deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with caution. First, the Bean Provider must
code the entity bean with the anticipation of a loopback call. Second, since the container cannot, in
general, tell a loopback from a concurrent call from a different client, the client programmer must be

Final Jakarta® Enterprise Beans, Optional Features 95

4.6. Responsibilities of the Enterprise Bean Provider

careful to avoid code that could lead to a concurrent call in the same transaction context.

Concurrent calls in the same transaction context targeted at the same entity object are illegal and may
lead to unpredictable results. Since the container cannot, in general, distinguish between an illegal
concurrent call and a legal loopback, application programmers are encouraged to avoid using
loopbacks. Entity beans that do not need callbacks should be marked as non-reentrant in the
deployment descriptor, allowing the container to detect and prevent illegal concurrent calls from
clients.

4.6. Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of an entity Bean Provider to ensure that an entity bean with
container-managed persistence can be deployed in any Enterprise Beans container.

4.6.1. Classes and Interfaces

The entity Bean Provider is responsible for providing the following class files:

Entity bean class and any dependent classes
* Primary key class

* Entity bean’s remote interface and entity bean’s remote home interface, if the entity bean provides
a remote client view

» Entity bean’s local interface and local home interface, if the entity bean provides a local client view

The Bean Provider must provide a remote interface and a remote home interface or a local interface
and a local home interface for the bean. The Bean Provider may provide a remote interface, remote
home interface, local interface, and local home interface for the bean. Other combinations are not
allowed.

4.6.2. Enterprise Bean Class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, the jakarta.ejb.EntityBean interface.

The class may implement, directly or indirectly, the jakarta.ejb.TimedObject interface.

The class must be defined as public and must be abstract. The class must be a top level class.
The class must define a public constructor that takes no arguments.

The class must not define the finalize() method.

The class may, but is not required to, implement the entity bean’s component interface. "* If the class
implements the entity bean’s component interface, the class must provide no-op implementations of

96 Jakarta® Enterprise Beans, Optional Features Final

4.6. Responsibilities of the Enterprise Bean Provider

the methods defined by that interface. The container will never invoke these methods on the bean
instances at runtime.

The entity bean class must implement the business methods, and the ejbCreate<METHOD> and
ejbPost(Create<METHOD> methods as described later in this section.

The entity bean class must implement the ejbHome<METHOD> methods that correspond to the home
business methods specified in the bean’s home interface. These methods are executed on an instance
in the pooled state; hence they must not access state that is particular to a specific bean instance (e.g.,
the accessor methods for the bean’s abstract persistence schema must not be used by these methods).

The entity bean class must implement the get and set accessor methods of the bean’s abstract
persistence schema as abstract methods.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has
superclasses, the business methods, the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods, and the
methods of the EntityBean interface and/or the TimedObject interface may be implemented in the
enterprise bean class or in any of its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods invoked
internally by the business methods) in addition to the methods required by the Enterprise Beans
specification.

The entity bean class does not implement the finder methods. The implementations of the finder
methods are provided by the container.

The entity bean class must implement any ejbSelect<METHOD> methods as abstract methods.

4.6.3. Dependent Value Classes

The following are the requirements for a dependent value class:
The class must be defined as public and must not be abstract.

The class must be serializable.

4.6.4. ejbCreate<METHOD> Methods

The entity bean class must implement the ejbCreate<METHOD> methods that correspond to the
create<METHOD> methods specified in the entity bean’s home interface or local home interface.

The entity bean class may define zero or more ejbCreate<METHOD> methods whose signatures must
follow these rules:

The method name must have ejbCreate as its prefix.

The method must be declared as public.

Final Jakarta® Enterprise Beans, Optional Features 97

4.6. Responsibilities of the Enterprise Bean Provider

The method must not be declared as final or static.
The return type must be the entity bean’s primary key type.

If the ejbCreate<METHOD> method corresponds to a create<METHOD> on the entity bean’s remote home
interface, the method arguments and return value types must be legal types for RMI-IIOP.

The throws clause must define the jakarta.ejb.CreateException. The throws clause may define arbitrary
application specific exceptions.

Compatibility Note: Enterprise Beans 1.0 allowed the ejbCreate method to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1—an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean
should throw the jakarta.ejb.EJBException or another java.lang.RuntimeException to indicate non-
application exceptions to the container (see System Exceptions). The ejb(reate method of an entity bean
with cmp-version 2.x must not throw the java.rmi.RemoteException.

4.6.5. ejbPostCreate<METHOD> Methods

For each ejbCreate<METHOD> method, the entity bean class must define a matching
ejbPostCreate<METHOD> method, using the following rules:

The method name must have ejbPostCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be void.

The method arguments must be the same as the arguments of the matching ejbCreate<METHOD> method.

The throws clause may define arbitrary application specific exceptions, including the
jakarta.ejb.CreateException.

Compatibility Note: Enterprise Beans 1.0 allowed the ejbPostCreate method to throw the
java.rmi.Remotebxception to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1—an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean
should throw the jakarta.ejb.EJBException or another java.lang.RuntimeException to indicate non-
application exceptions to the container (see System Exceptions). The ejbPost(reate method of an entity
bean with cmp-version 2.x must not throw the java.rmi.RemoteException.

4.6.6. ejpHome<METHOD> Methods

The entity bean class may define zero or more home methods whose signatures must follow the
following rules:

An ejbHome<METHOD> method must exist for every home <METHOD> method on the entity bean’s remote

98 Jakarta® Enterprise Beans, Optional Features Final

4.6. Responsibilities of the Enterprise Bean Provider

home or local home interface. The method name must have ejbHome as its prefix followed by the name
of the <METHOD> method in which the first character has been uppercased.

The method must be declared as public.
The method must not be declared as static.

If the ejbHome<METHOD> method corresponds to a home <METHOD> on the entity bean’s remote home
interface, the method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions. The throws clause must not
throw the java.rmi.RemoteException.

4.6.7. ejbSelect<METHOD> Methods

The entity bean class may define one or more select methods whose signatures must follow the
following rules:

The method name must have ejbSelect as its prefix.
The method must be declared as public.
The method must be declared as abstract.

The throws clause must define the jakarta.ejb.FinderException. The throws clause may define arbitrary
application specific exceptions.

4.6.8. Business Methods

The entity bean class may define zero or more business methods whose signatures must follow these
rules:

The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the
callback methods used by the Enterprise Beans architecture.

The business method must be declared as public.
The method must not be declared as final or static.

If the business method corresponds to a method of the entity bean’s remote interface, the method
argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: Enterprise Beans 1.0 allowed the business methods to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1—an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean
should throw the jakarta.ejb.EJBException or another java.lang.RuntimeException to indicate non-

Final Jakarta® Enterprise Beans, Optional Features 99

4.6. Responsibilities of the Enterprise Bean Provider

application exceptions to the container (see System Exceptions). The business methods of an entity bean
with cmp-version 2.x must not throw the java.rmi.RemoteException.

4.6.9. Entity Bean’s Remote Interface
The following are the requirements for the entity bean’s remote interface:
The interface must extend the jakarta.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that their
argument and return value types must be valid types for RMI-IIOP, and their throws clauses must
include the java.rmi.RemoteException.

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity bean’s
class. The matching method must have:

* The same name.
* The same number and types of its arguments, and the same return type.

 All the exceptions defined in the throws clause of the matching method of the enterprise Bean class
must be defined in the throws clause of the method of the remote interface.

The remote interface methods must not expose local interface types, local home interface types, timer
handles, or the managed collection classes that are used for entity beans with container-managed
persistence as arguments or results.

4.6.10. Entity Bean’s Remote Home Interface
The following are the requirements for the entity bean’s home interface:
The interface must extend the jakarta.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their
argument and return types must be of valid types for RMI-IIOP, and their throws clauses must include
the java.rmi.RemoteException.

The remote home interface is allowed to have superinterfaces. Use of interface inheritance is subject to
the RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the remote home interface must be one of the following:

e A create method.
¢ A finder method.

¢ A home method.

100 Jakarta® Enterprise Beans, Optional Features Final

4.6. Responsibilities of the Enterprise Bean Provider

Each create method must be named “create<METHOD>”, e.g. createlargeAccounts. Each create method
name must match one of the ejbCreate<METHOD> methods defined in the enterprise bean class. The
matching ejbCreate<METHOD> method must have the same number and types of its arguments. (Note that
the return type is different.)

The return type for a create<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause of
the matching create method of the home interface (i.e., the set of exceptions defined for the create
method must be a superset of the union of exceptions defined for the ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the jakarta.ejb.CreateException.
Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts).

The return type for a find<METHOD> method must be the entity bean’s remote interface type (for a single-
object finder), or a collection thereof (for a multi-object finder).

The remote home interface must always include the findByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.

The throws clause of a finder method must include the jakarta.ejb.FinderException.

Home methods can have arbitrary names, but they must not start with “create”, “find”, or “remove”.
Their argument and return types must be of valid types for RMI-IIOP, and their throws clauses must
include the java.rmi.RemoteException. The matching ejbHome method specified in the entity bean class
must have the same number and types of arguments and must return the same type as the home
method as specified in the remote home interface of the bean.

The remote home interface methods must not expose local interface types, local home interface types,
timers or timer handles, or the managed collection classes that are used for entity beans with
container-managed persistence as arguments or results.

4.6.11. Entity Bean’s Local Interface
The following are the requirements for the entity bean’s local interface:
The interface must extend the jakarta.ejb.EJBLocalObject interface.

For each method defined in the local interface, there must be a matching method in the entity bean’s
class. The matching method must have:

* The same name.
* The same number and types of its arguments, and the same return type.

» All the exceptions defined in the throws clause of the matching method of the enterprise Bean class

Final Jakarta® Enterprise Beans, Optional Features 101

4.6. Responsibilities of the Enterprise Bean Provider

must be defined in the throws clause of the method of the local interface.

4.6.12. Entity Bean’s Local Home Interface

The following are the requirements for the entity bean’s local home interface:
The interface must extend the jakarta.ejb.EJBLocalHome interface.

Each method defined in the home interface must be one of the following:

e A create method.
* A finder method.

¢ A home method.

Each create method must be named “create<METHOD>”, e.g. createlargeAccounts. Each create method
name must match one of the ejbCreate<METHOD> methods defined in the enterprise bean class. The
matching ejbCreate<METHOD> method must have the same number and types of its arguments. (Note that
the return type is different.)

The return type for a create<METHOD> method on the local home interface must be the entity bean’s local
interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause of
the matching create method of the local home interface (i.e., the set of exceptions defined for the
create method must be a superset of the union of exceptions defined for the ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the jakarta.ejb.CreateException.
Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts).

The return type for a find<METHOD> method defined on the local home interface must be the entity
bean’s local interface type (for a single-object finder), or a collection thereof (for a multi-object finder).

The local home interface must always include the findByPrimaryKey method, which is always a single-
object finder. The method must declare the primary key class as the method argument.

The throws clause of a finder method must include the jakarta.ejb.FinderException.

Home methods can have arbitrary names, but they must not start with “create”, “find”, or “remove”.
The matching ejbHome method specified in the entity bean class must have the same number and types
of arguments and must return the same type as the home method as specified in the home interface of
the bean. The throws clause of a home method defined on the local home interface must not include the
java.rmi.RemoteException.

102 Jakarta® Enterprise Beans, Optional Features Final

4.7. The Responsibilities of the Container Provider

4.6.13. Entity Bean’s Primary Key Class
The Bean Provider must specify a primary key class in the deployment descriptor.
The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of the hashCode() and equals(0Object other) methods to
simplify the management of the primary keys by the container.

4.6.14. Entity Bean’s Deployment Descriptor

The Bean Provider must specify the relationships in which the entity beans participate in the
relationships element.

The Bean Provider must provide unique names to designate entity beans as follows, and as described
in The Bean Provider’s View of the Deployment Descriptor.

* The Bean Provider must specify unique names for entity beans which are defined in the ejb-jar file
by using the ejb-name element.

* The Bean Provider must specify a unique abstract schema name for an entity bean using the
abstract-schema-name deployment descriptor element.

The Bean Provider must define a query for each finder or select method except findByPrimaryKey(key).
Typically this will be provided as the content of the ejb-ql element contained in the query element for
the entity bean. The syntax of Enterprise Beans QL is defined in Enterprise Beans QL: EJB 2.1 Query
Language for Container-Managed Persistence Query Methods.

Since Enterprise Beans QL query strings are embedded in the deployment descriptor, which is an XML
document, it may be necessary to encode the following characters in the query string: “>”, “<”.

4.7. The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support entity beans. The
Container Provider is responsible for providing the deployment tools, and for managing the entity
beans at runtime, including their persistent state and relationships.

Because the Enterprise Beans specification does not define the API between deployment tools and the
container, we assume that the deployment tools described in this section are provided by the Container
Provider. Alternatively, the deployment tools may be provided by a different vendor who uses the
container vendor’s specific API.

4.7.1. Generation of Implementation Classes

The deployment tools provided by the Container Provider are responsible for the generation of
additional classes when the entity bean is deployed. The tools obtain the information that they need for
generation of the additional classes by introspecting the classes and interfaces provided by the Bean

Final Jakarta® Enterprise Beans, Optional Features 103

4.7. The Responsibilities of the Container Provider

Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

A class that implements the entity bean’s remote home interface (i.e., the entity EJBHome class).

* A class that implements the entity bean’s remote interface (i.e., the entity EJBObject class).

A class that implements the entity bean’s local home interface (i.e., the entity EJBLocalHome class).

A class that implements the entity bean’s local interface (i.e., the EJBLocalObject class).

A class that implements the entity bean class (i.e., a concrete class corresponding to the abstract
entity bean class that was provided by the Bean Provider).

The deployment tools may also generate a class that mixes some container-specific code with the entity
bean class. The code may, for example, help the container to manage the entity bean instances at
runtime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business methods
and that is used to customize the business logic for an existing operational environment. For example,
a wrapper for a debit function on the Account bean may check that the debited amount does not exceed
a certain limit, or perform security checking that is specific to the operational environment.

4.7.2. Enterprise Bean Class

The following are the requirements for a concrete entity bean class:

The class must extend the abstract entity bean class provided by the Bean Provider.

The class must be defined as public and must not be abstract.

The class must define a public constructor that takes no arguments.

The class must implement the get and set accessor methods of the bean’s abstract persistence schema.
The class must not define the finalize method.

The entity bean class must implement the ejbFind<METHOD> methods.

The entity bean class must implement the ejbSelect<METHOD> methods.

The entity bean class is allowed to implement other methods in addition to the methods required by
the Enterprise Beans specification.

4.7.3. ejpbFind<METHOD> Methods

For each find<METHOD> method in the remote home interface or local home interface of the entity bean,
there must be a corresponding ejbFind<METHOD> method with the same argument types in the concrete
entity bean class.

104 Jakarta® Enterprise Beans, Optional Features Final

4.7. The Responsibilities of the Container Provider

The method name must have ejbFind as its prefix.
The method must be declared as public.

If the ejbFind<METHOD> method corresponds to a find<METHOD> on the entity bean’s remote home
interface, the method argument and return value types must be legal types for RMI-IIOP.

The return type of an ejbFind<METHOD> method must be the entity bean’s primary key type, or a
collection of primary keys.

The throws clause must define the jakarta.ejb.FinderException. The throws clause may define arbitrary
application specific exceptions.

Every finder method except ejbFindByPrimaryKey(key) is specified in the query deployment descriptor
element for the entity. The container must use the Enterprise Beans QL query string that is the content
of the ejb-ql element or the descriptive query specification contained in the description element as the
definition of the query of the corresponding ejbFind<METHOD> method.

4.7.4. ejbSelect<METHOD> Methods

For each ejbSelect<METHOD> method in the abstract entity bean class, there must be a method with the
same argument and result types in the concrete entity bean class.

Every select method is specified in a query deployment descriptor element for the entity. The container
must use the Enterprise Beans QL query string that is the content of the ejb-ql element or the
descriptive query specification that is contained in the description element as the definition of the
query of the corresponding ejbSelect<METHOD> method.

The container must use the contents of the query element, the corresponding Enterprise Beans QL
string and the type of the values selected as specified by the SELECT clause to determine the type of the
values returned by a select method.

The container must ensure that there are no duplicates returned by a select method if the return type
is java.util.Set.

4.7.5. Entity EJBHome Class

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s remote
home interface. This class implements the methods of the jakarta.ejb.EJBHome interface, and the type-
specific create and finder methods specific to the entity bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD> method,
followed by the matching ejbPostCreate<METHOD> method, passing the create<METHOD> parameters to
these matching methods.

The implementation of the remove methods defined in the jakarta.ejb.EJBHome interface must activate
an instance (if an instance is not already in the ready state) and invoke the ejbRemove method on the

Final Jakarta® Enterprise Beans, Optional Features 105

4.7. The Responsibilities of the Container Provider

instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD> method. The
implementation of the find<METHOD> method must create an entity object reference for the primary key
returned from the ejbFind<METHOD> and return the entity object reference to the client. If the
ejbFind<METHOD> method returns a collection of primary keys, the implementation of the find<METHOD>
method must create a collection of entity object references for the primary keys and return the
collection to the client.

The implementation of each <METHOD> method invokes a matching ejbHome<METHOD> method (in which
the first character of <METHOD> is uppercased in the name of the ejbHome<METHOD> method), passing the
parameters of the <METHOD> method to the matching ejbHome<METHOD> method.

4.7.6. Entity EJBObject Class

The entity EJBObject class, which is generated by deployment tools, implements the entity bean’s
remote interface. It implements the methods of the jakarta.ejb.EJBObject interface and the remote
business methods specific to the entity bean.

The implementation of the remove method (defined in the jakarta.ejb.EJBObject interface) must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method
on the instance.

The implementation of each remote business method must activate an instance (if an instance is not
already in the ready state) and invoke the matching business method on the instance.

4.7.7. Entity EJBLocalHome Class

The entity EJBLocalHome class, which is generated by deployment tools, implements the entity bean’s
local home interface. This class implements the methods of the jakarta.ejb.EJBLocalHome interface, and
the type-specific create and finder methods specific to the entity bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD> method,
followed by the matching ejbPostCreate<METHOD> method, passing the create<METHOD> parameters to
these matching methods.

The implementation of the remove method defined in the jakarta.ejb.EJBLocalHome interface must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method
on the instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD> method. The
implementation of the find<METHOD> method must create a local entity object reference for the primary
key returned from the ejbFind<METHOD> and return the local entity object reference to the local client. If
the ejbFind<METHOD> method returns a collection of primary keys, the implementation of the
find<METHOD> method must create a collection of local entity object references for the primary keys and
return the collection to the local client.

106 Jakarta® Enterprise Beans, Optional Features Final

4.7. The Responsibilities of the Container Provider

The implementation of each <METHOD> home method invokes a matching ejbHome<METHOD> method (in
which the first character of <METHOD> is uppercased in the name of the ejbHome<METHOD> method), passing
the parameters of the <METHOD> method to the matching ejbHome<METHOD> method.

4.7.8. Entity EJBLocalObject Class

The entity EJBLocalObject class, which is generated by deployment tools, implements the entity bean’s
local interface. It implements the methods of the jakarta.ejb.EJBLocalObject interface and the local
business methods specific to the entity bean.

The implementation of the remove method (defined in the jakarta.ejb.EJBLocalObject interface) must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method
on the instance.

The implementation of each local business method must activate an instance (if an instance is not
already in the ready state) and invoke the matching business method on the instance.

4.7.9. Handle Class

The deployment tools are responsible for implementing the handle class for the entity bean. The
handle class must be serializable by the Java Serialization protocol.

As the handle class is not entity bean specific, the container may, but is not required to, use a single
class for all deployed entity beans.

4.7.10. Home Handle Class

The deployment tools responsible for implementing the home handle class for the entity bean. The
handle class must be serializable by the Java Serialization protocol.

Because the home handle class is not entity bean specific, the container may, but is not required to, use
a single class for the home handles of all deployed entity beans.

4.7.11. Metadata Class

The deployment tools are responsible for implementing the class that provides metadata information
to the remote client view contract. The class must be a valid RMI-IIOP Value Type, and must implement
the jakarta.ejb.EJBMetaData interface.

Because the metadata class is not entity bean specific, the container may, but is not required to, use a
single class for all deployed enterprise beans.

4.7.12. Instance’s Re-entrance

The container runtime must enforce the rules defined in Non-reentrant and Re-entrant Instances.

Final Jakarta® Enterprise Beans, Optional Features 107

4.8. Primary Keys

4.7.13. Transaction Scoping, Security, Exceptions

The container runtime must follow the rules on transaction scoping and exception handling described
in Support for Transactions and Exception Handling. The container runtime must follow the rules on
security checking described in the EJB Core Contracts and Requirements document [2] Chapter
“Security Management”.

4.7.14. Implementation of Object References

The container should implement the distribution protocol between the remote client and the container
such that the object references of the remote home and remote interfaces used by entity bean clients
are usable for a long period of time. Ideally, a remote client should be able to use an object reference
across a server crash and restart. An object reference should become invalid only when the entity
object has been removed, or after a reconfiguration of the server environment (for example, when the
entity bean is moved to a different Enterprise Beans server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the client
code needs to have a recovery handler for the system exceptions thrown from the individual method
invocations on the remote home and remote interface, the client should not be forced to re-obtain the
object references.

4.7.15. EntityContext

The container must implement the EntityContext.getEJBObject method such that the bean instance can
use the Java language cast to convert the returned value to the entity bean’s remote interface type.
Specifically, the bean instance does not have to use the PortableRemoteObject.narrow method for the
type conversion.

4.8. Primary Keys

The container must be able to manipulate the primary key type of an entity bean. Therefore, the
primary key type for an entity bean with container-managed persistence must follow the rules in this
subsection, in addition to those specified in Entity Bean’s Primary Key Class.

There are two ways to specify a primary key class for an entity bean with container-managed
persistence:

» Primary key that maps to a single field in the entity bean class.

* Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is convenient for
single-field keys. Without the first method, simple types such as String would have to be wrapped in a
user-defined class.

108 Jakarta® Enterprise Beans, Optional Features Final

4.8. Primary Keys

4.8.1. Primary Key That Maps to a Single Field in the Entity Bean Class

The Bean Provider uses the primkey-field element of the deployment descriptor to specify the
container-managed field of the entity bean class that contains the primary key. The field’s type must be
the primary key type.

4.8.2. Primary Key That Maps to Multiple Fields in the Entity Bean Class
The primary Kkey class must be public, and must have a public constructor with no parameters.
All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-
managed fields. (This allows the container to extract the primary key fields from an instance’s
container-managed fields, and vice versa.)

4.8.3. Special Case: Unknown Primary Key Class

In special situations, the entity Bean Provider may choose not to specify the primary key class or the
primary key fields for an entity bean with container-managed persistence. This case usually happens
when the entity bean does not have a natural primary key, and/or the Bean Provider wants to allow the
Deployer using the Container Provider’s tools to select the primary key fields at deployment time. The
entity bean’s primary key type will usually be derived from the primary key type used by the
underlying database system that stores the entity objects. The primary key used by the database
system may not be known to the Bean Provider.

In this special case, the type of the argument of the findByPrimaryKey method must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deployment descriptor
as of the type java.lang.0Object.

When defining the primary key for the enterprise bean, the Deployer using the Container Provider’s
tools will typically add additional container-managed fields to the concrete subclass of the entity bean
class (this typically happens for entity beans that do not have a natural primary key, and the primary
keys are system-generated by the underlying database system that stores the entity objects). In this
case, the container must generate the primary key value when the entity bean instance is created (and
before ejbPost(reate is invoked on the instance.)

The primary key class is specified at deployment time in the situations when the Bean Provider develops
an entity bean that is intended to be used with multiple back-ends that provide persistence, and when
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application
programming model, because the clients written prior to deployment of the entity bean may not use, in
general, the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, the
methods should not depend on the type of the object returned from EntityContext.getPrimaryKey, because

Final Jakarta® Enterprise Beans, Optional Features 109

4.8. Primary Keys

the return type is determined by the Deployer after the enterprise bean class has been written.

[4] At this point it must appear to the application that the entity has been removed from the persistent store. If the
container employs an optimistic caching strategy and defers the removal of the entity from the database (e.g., to the end
of transaction), this must be invisible to the application.

[5] The relation names and the relationship role names are not used in the code provided by the Bean Provider.

[6] An entity bean has no ejbCreate<METHOD> and ejbPostCreate<METHOD> methods if it does not define any create methods
in its home interface. Such an entity bean does not allow its clients to create new Enterprise Beans objects. The entity
bean restricts the clients to accessing entities that were created through direct database inserts.

[7] The above requirement is to allow the creation of an entity bean with bean-managed persistence by subclassing an
entity bean with container-managed persistence.

[8] Containers using optimistic caching strategies, for example, may rollback the transaction at a later point.

[9] The ability to refresh the state of a read-only bean and the intervals at which such refresh occurs are vendor-specific.
[10] For example, an implementation might choose to ignore such updates or to disallow them.

[11] The findByPrimaryKey method is mandatory for all entity beans.

[12] It is consistent with this specification to provide options for this refresh to be deferred or avoided in the case of
read-only beans.

[13] If the entity bean class does implement the component interface, care must be taken to avoid passing of this as a
method argument or result. This potential error can be avoided by choosing not to implement the component interface
in the entity bean class.

110 Jakarta® Enterprise Beans, Optional Features Final

5.1. Overview

Chapter 5. Enterprise Beans QL: E]JB 2.1 Query
Language for Container-Managed Persistence
Query Methods

The Enterprise Beans query language, Enterprise Beans QL, is used to define queries for entity beans
with container-managed persistence. Enterprise Beans QL enables the Bean Provider to specify the
semantics of query methods in a portable way.

This chapter provides the complete definition of Enterprise Beans QL that is required to be
supported for use with Enterprise Beans 2.1 entity beans with container managed persistence.
Implementations of this specification are permitted, but not required, to provide the extensions to
Enterprise Beans QL defined by the Jakarta Persistence query language [5] for use with finder and
select methods. Applications that make use of such extensions in finder and select methods will not
be portable.

5.1. Overview

Enterprise Beans QL is a query specification language for the finder and select methods of entity beans
with container-managed persistence. Enterprise Beans QL can be compiled to a target language, such
as SQL, of a database or other persistent store. This allows the execution of queries to be shifted to the
native language facilities provided by the persistent store, instead of requiring queries to be executed
on the runtime representation of the entity beans’ state. As a result, query methods can be optimizable
as well as portable.

The Enterprise Beans query language uses the abstract persistence schemas of entity beans, including
their relationships, for its data model. It defines operators and expressions based on this data model.

The Bean Provider uses Enterprise Beans QL to write queries based on the abstract persistence
schemas and the relationships defined in the deployment descriptor. Enterprise Beans QL depends on
navigation and selection based on the cmp-fields and cmr-fields of the related entity beans. The Bean
Provider can navigate from an entity bean to other entity beans by using the names of cmr-fields in
Enterprise Beans QL queries.

Enterprise Beans QL allows the Bean Provider to use the abstract schema types of entity beans in a
query if the abstract persistence schemas of the beans are defined in the same deployment descriptor
as the query.

It is possible to parse and validate Enterprise Beans QL queries before entity beans are deployed
because Enterprise Beans QL is based on the abstract schema types of entity beans.

Enterprise Beans QL queries can be used in two different ways:

Final Jakarta® Enterprise Beans, Optional Features 111

5.2. Enterprise Beans QL Definition

* as queries for selecting entity objects through finder methods defined in the home interface. Finder
methods allow the results of an Enterprise Beans QL query to be used by the clients of the entity
bean.

* as queries for selecting entity objects or other values derived from an entity bean’s abstract schema
type through select methods defined on the entity bean class. Select methods allow the Bean
Provider to use Enterprise Beans QL to find objects or values related to the state of an entity bean
without directly exposing the results to the client.

5.2. Enterprise Beans QL Definition

Enterprise Beans QL uses a SQL-like syntax to select objects or values based on the abstract schema
types and relationships of entity beans. The path expressions of Enterprise Beans QL allow the Bean
Provider to navigate over relationships defined by the cmr-fields of the abstract schema types of entity
beans.

This chapter provides the full definition of the language.
An Enterprise Beans QL query is a string which consists of the following clauses:

* a SELECT clause, which determines the type of the objects or values to be selected.

* a FROM clause, which provides declarations that designate the domain to which the expressions
specified in the SELECT clause and WHERE clause of the query apply.

* an optional WHERE clause, which may be used to restrict the results that are returned by the
query.

* an optional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, an Enterprise Beans QL query is defined as:
Enterprise Beans QL ::= select_clause from_clause [where_clause] [orderby_clause]

An Enterprise Beans QL query must always have a SELECT and a FROM clause. The square brackets []
indicate that the WHERE and ORDER BY clauses are optional.

An Enterprise Beans QL query may have parameters that correspond to the parameters of the finder
or select method for which it is defined.

An Enterprise Beans QL query is statically defined in the ejb-ql deployment descriptor element.

5.2.1. Abstract Schema Types and Query Domains

Enterprise Beans QL is a typed language whose design is based on the type model of Enterprise Beans
2.0 container-managed persistence. Every expression in Enterprise Beans QL has a type. The type of

112 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

the expression is derived from the structure of the expression; the abstract schema types of the
identification variable declarations; the types to which the cmp-fields and cmr-fields evaluate; and the
types of literals. The allowable types in Enterprise Beans QL are the abstract schema types of entity
beans and cmp-fields.

The abstract schema type of an entity bean is derived from its entity bean class and the information
provided in the deployment descriptor. There is a one-to-one mapping between entity bean abstract
schema types and entity bean homes. Abstract schema names, as specified by the abstract-schema-name
elements in the deployment descriptor, are used to denote entity bean abstract schema types in
Enterpise Beans QL.

Informally, the abstract schema type of an entity bean can be characterized as follows:

 For every get accessor method of the entity bean class that corresponds to a cmp-field element in the
deployment descriptor, there is a field (“cmp-field”) whose abstract schema type corresponds to the
result type of the accessor method.

» For every get accessor method of the entity bean that corresponds to a cmr-field element in the
deployment descriptor, there is a field (“cmr-field”) whose type is the abstract schema type of the
entity bean denoted by the ejb-name element contained in the corresponding ejb-relationship-role
element (or, if the role has a multiplicity of Many, a collection of such).

Abstract schema types are specific to the Enterprise Beans QL data model. The container is not
required to implement or otherwise materialize an abstract schema type.

The domain of an Enterprise Beans QL query consists of the abstract schema types of all entity beans
with container-managed persistence that are defined in the same deployment descriptor.

The Bean Provider creates an ejb-jar file which contains a deployment descriptor describing
several entity beans and their relationships. Enterprise Beans QL assumes that a single
deployment descriptor in an ejb-jar file constitutes a nondecomposable unit for the container
responsible for implementing the abstract persistence schemas of the entity beans and the
relationships defined in the deployment descriptor and the ejb-jar file. Queries can be written by
utilizing navigation over the cmr-fields of related beans supplied in the same ejb-jar by the Bean
Provider because they are implemented and managed by the same container.

The domain of a query may be restricted by the navigability of the relationships of the entity bean on
which it is based. The cmr-fields of an entity bean’s abstract schema type determine navigability. Using
the cmr-fields and their values, a query can select related entity beans and use their abstract schema
types in the query.

5.2.2. Query Methods

Enterprise Beans QL is used for two types of query methods:

* Finder methods—Finder methods are defined in the home interface(s) of an entity bean and return

Final Jakarta® Enterprise Beans, Optional Features 113

5.2. Enterprise Beans QL Definition

entity objects or local entity objects. A finder method that is defined on the remote home interface
must return either an EJBObject or a collection of EJBObjects; a finder method that is defined on
the local home interface must return either an E]JBLocalObject or a collection of EJBLocalObjects.
The result type of a finder method defined on the remote home interface of an entity bean is the
entity bean’s remote interface (or a collection of objects implementing the entity bean’s remote
interface). The result type of a finder method defined on the local home interface of an entity bean
is the entity bean’s local interface (or a collection of objects implementing the entity bean’s local
interface).

» Select methods—Select methods are a special type of query method not directly exposed through
the client view. The Bean Provider typically uses select methods to select the persistent state of an
entity object or to select entities that are related to the entity bean for which the query is defined.
The result type of a select method can be an E]JBLocalObject (or a collection of EJBLocalObjects), an
EJBObject (or a collection of EJBObjects), a cmp-field value (or a collection of such), or the result of
an aggregate function.

5.2.3. Naming

Entity beans are designated in Enterprise Beans QL query strings by their abstract schema names. The
Bean Provider assigns unique abstract schema names to entity beans as part of the development
process so that they can be used within queries. These unique names are scoped within the
deployment descriptor file.

5.2.4. Examples

The following convention refers to the names used for entity beans in subsequent examples: An entity
bean as a whole is designated by <name>EJ]B, and its entity bean class and abstract schema type are
designated by <name>, following the convention used to name the local interface of an entity bean.

The first example assumes that the Bean Provider provides several entity beans, OrderEJ]B, ProductEJB,
LineItemE]B, ShippingAddressEJB, and BillingAddressEJB. The abstract schema types for these entity
beans are Order, Product, LineItem, ShippingAddress, and BillingAddress respectively. These beans are
logically in the same ejb-jar file, as shown in Several Entity Beans with Abstract Persistence Schemas
Defined in the Same Ejb-jar File.. Only two of the entity beans, OrderEJB and ProductEJ]B, have remote
interfaces and remote home interfaces.

114 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

ShippingAddress BillingAddress

Figure 9. Several Entity Beans with Abstract Persistence Schemas Defined in the Same Ejb-jar File.

The entity beans ShippingAddress and BillingAddress each have one-to-many relationships with Order.
There is also a one-to-many relationship between Order and Lineitem. The entity bean Lineltem is
related to Product in a many-to-one relationship.

Enterprise Beans QL allows the Bean Provider to specify finder queries for OrderE]JB by navigating
over the cmr-fields and cmp-fields defined by Order and LineItem. A finder method query to find all
orders with pending line items might be written as follows:

SELECT DISTINCT OBJECT(o)
FROM Order AS o, IN(o.lineItems) AS 1
WHERE 1.shipped = FALSE

This query navigates over the cmr-field lineItems of the abstract schema type Order to find line items,
and uses the cmp-field shipped of LineItem to select those orders that have at least one line item that
has not yet shipped. (Note that this query does not select orders that have no line items.)

Although predefined reserved identifiers, such as DISTINCT, OBJECT, FROM, AS, IN, WHERE, and FALSE
appear in upper case in this example, predefined reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to be of type Order. If this
query is defined for a finder method on the entity bean’s remote home interface, the finder method
will return objects of the entity bean’s remote interface type corresponding to the abstract schema type
instances selected by the query. If this same query is defined for a finder method on the entity bean’s
local home interface, the finder method will return objects of the entity bean’s local interface type
corresponding to these same abstract schema type instances. Finder methods must always return
EJBObjects or E]JBLocalObjects of the bean type for which the query method is defined.

Because the same deployment descriptor defines the abstract persistence schemas of the related entity
beans, the Bean Provider can also specify a query for OrderEJB that utilizes the abstract schema type of
ProductEJB, and hence the cmp-fields and cmr-fields of both the abstract schema types Order and
Product. For example, if the abstract schema type Product has a cmp-field named product_type, a finder
query for OrderEJB can be specified using this cmp-field. Such a finder query might be: “Find all orders
for products with product type office supplies”. An Enterprise Beans QL query string for this might be

Final Jakarta® Enterprise Beans, Optional Features 115

5.2. Enterprise Beans QL Definition

as follows.

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineltems) 1
WHERE 1.product.product_type = 'office_supplies’

Because Order is related to Product by means of the relationships between Order and LineItem and
between Lineltem and Product, navigation using the cmr-fields lineltems and product is needed to
express the query. This query is specified by using the abstract-schema-name for OrderEJB, namely Order,
which designates the abstract schema type over which the query ranges. The basis for the navigation is
provided by the cmr-fields lineltems and product of the abstract schema types Order and LineItem
respectively.

5.2.5. The FROM Clause and Navigational Declarations

The FROM clause of an Enterprise Beans QL query defines the domain of the query by declaring
identification variables. The domain of the query may be constrained by path expressions.

Identification variables designate instances of a particular entity bean abstract schema type. The
FROM clause can contain multiple identification variable declarations separated by a comma (,).

from_clause ::= FROM identification_variable_declaration
[, identification_variable_declaration]*
identification_variable_declaration ::= collection_member_declaration |
range_variable_declaration
collection_member_declaration ::= IN (collection_valued_path_expression)
[AS] identifier
range_variable_declaration :: abstract_schema_name [AS] identifier

The following subsections discuss the constructs used in the FROM clause.

5.2.5.1. Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with a
Java identifier start character, and all other characters must be Java identifier part characters. An
identifier start character is any character for which the method Character.isJavaldentifierStart
returns true. This includes the underscore () character and the dollar sign ($) character. An identifier
part character is any character for which the method Character.isJavaldentifierPart returns true. The
question mark (?) character is reserved for use by Enterprise Beans QL.

The following are the reserved identifiers in Enterprise Beans QL: SELECT, FROM, WHERE, DISTINCT,
OBJECT, NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN 04 EMPTY, MEMBER,
OF, IS, AVG, MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD.

116 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification
variables.

It is recommended that the Bean Provider not use other SQL reserved words as identification
variables in Enterprise Beans QL queries because they may be used as Enterprise Beans QL
reserved identifiers in future versions of the Enterprise Beans specification.

5.2.5.2. Identification Variables

An identification variable is a valid identifier declared in the FROM clause of an Enterprise Beans QL
query. An identification variable may be declared using the special operators IN and, optionally, AS.

All identification variables must be declared in the FROM clause. Identification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any of the
following:

e abstract-schema-name
* ejb-name "
Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the
variable. For example, consider the previous finder query for OrderEJB:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineltems) 1
WHERE 1.product.product_type = 'office_supplies'

In the FROM clause declaration IN(o.lineltems) 1, the identification variable 1 evaluates to any
Lineltem value directly reachable from Order. The cmr-field 1lineItems is a collection of instances of the
abstract schema type Lineltem and the identification variable 1 refers to an element of this collection.
The type of 1 is the abstract schema type of LineItem.

An identification variable ranges over the abstract schema type of an entity bean. An identification
variable designates an instance of an entity bean abstract schema type or an element of a collection of
entity bean abstract schema types instances. Identification variables are existentially quantified in an
Enterprise Beans QL query.

An identification variable always designates a reference to a single value.lt is declared in one of two
ways; as a range variable or as a collection member identification variable:

» Arange variable is declared using the abstract schema name of an entity bean.

Final Jakarta® Enterprise Beans, Optional Features 117

5.2. Enterprise Beans QL Definition

* A collection member identification variable is declared using a collection-valued path expression.

The identification variable declarations are evaluated from left to right in the FROM clause. A
collection member identification variable declaration can use the result of a preceding identification
variable declaration of the query string.

5.2.5.3. Range Variable Declarations

The Enterprise Beans QL syntax for declaring an identification variable as a range variable is similar
to that of SQL; optionally, it uses the AS keyword.

range_variable_declaration ::= abstract_schema_name [AS] identifier

Objects or values that are related to an entity bean are typically obtained by navigation using path
expressions. However, navigation does not reach all objects. Range variable declarations allow the
Bean Provider to designate a “root” for objects which may not be reachable by navigation.

If the Bean Provider wants to select values by comparing more than one instance of an entity bean
abstract schema type, more than one identification variable ranging over the abstract schema type is
needed in the FROM clause.

The following finder method query returns orders whose quantity is greater than the order quantity
for John Smith. This example illustrates the use of two different identification variables in the FROM
clause, both of the abstract schema type Order. The SELECT clause of this query determines that it is
the orders with quantities larger than John Smith’s that are returned.

SELECT DISTINCT OBJECT(o1)

FROM Order o1, Order o2

WHERE o1.quantity > o2.quantity AND
02.customer.lastname = 'Smith"' AND
02.customer.firstname = 'John'

5.2.5.4. Collection Member Declarations

An identification variable declared by a collection_member_declaration ranges over values of a
collection obtained by navigation using a path expression. Such a path expression represents a
navigation involving the cmr-fields of an entity bean abstract schema type. Because a path expression
can be based on another path expression, the navigation can use the cmr-fields of related entity beans.
Path expressions are discussed in Path Expressions.

An identification variable of a collection member declaration is declared using a special operator, the
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The
path expression evaluates to a collection type specified as a result of navigation to a collection-valued
cmr-field of an entity bean abstract schema type.

118 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::= IN (collection_valued_path_expression)
[AS] identifier

For example, the FROM clause for a query defined for OrderEJB might contain the following collection
member declaration:

IN(o.lineltems) 1

In this example, lineltems is the name of a cmr-field whose value is a collection of instances of the
abstract schema type LineItem of the LineItemE]B entity bean. The identification variable 1 designates a
member of this collection, a single Lineltem abstract schema type instance. In this example, o is an
identification variable of the abstract schema type Order.

5.2.5.5. Example

The following FROM clause contains two identification variable declaration clauses. The identification
variable declared in the first clause is used in the second clause. The clauses declare the variables o
and 1 respectively. The range variable declaration Order AS o designates the identification variable o as
a range variable whose type is the abstract schema type, Order. The identification variable 1 has the
abstract schema type LineItem. Because the clauses are evaluated from left to right, the identification
variable 1 can utilize the results of the navigation on o.

FROM Order AS o, IN(o.lineItems) 1

5.2.5.6. Path Expressions

An identification variable followed by the navigation operator (.) and a cmp-field or cmr-field is a path
expression. The type of the path expression is the type computed as the result of navigation; that is, the
type of the cmp-field or cmr-field to which the expression navigates.

Depending on navigability, a path expression that leads to a cmr-field may be further composed. Path
expressions can be composed from other path expressions if the original path expression evaluates to
a single-valued type (not a collection) corresponding to a cmr-field. A path expression that ends in a
cmp-field is terminal and cannot be further composed.

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-
terminal cmr-field in the path expression is null, the path is considered to have no value, and does not
participate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follows:

Final Jakarta® Enterprise Beans, Optional Features 119

5.2. Enterprise Beans QL Definition

cmp_path_expression ::=
{identification_variable | single_valued_cmr_path_expression}.cmp_field
single_valued_cmr_path_expression ::=
identification_variable.[single_valued_cmr_field.]*single_valued_cmr_field
single_valued_path_expression ::=
cmp_path_expression | single_valued_cmr_path_expression
collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*collection_valued_cmr_field

A single_valued_cmr_field is designated by the name of a cmr-field in a one-to-one or many-to-one
relationship. The type of a single_valued_cmr_path_expression is the abstract schema type of the related
entity bean.

A collection_valued_cmr_field is designated by the name of a cmr-field in a one-to-many or a many-to-
many relationship. The type of a collection_valued_cmr_field is a collection of values of the abstract
schema type of the related entity bean.

Navigation to a related entity bean results in a value of the related entity bean’s abstract schema type.

The evaluation of a path expression terminating in a cmp-field results in the abstract schema type
corresponding to the Java type designated by the cmp-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a
collection. For example, if o designates Order, the path expression o.lineltems.product is illegal since
navigation to lineItems results in a collection. This case should produce an error when the Enterprise
Beans QL query string is verified. To handle such a navigation, an identification variable must be
declared in the FROM clause to range over the elements of the lineltems collection. Another path
expression must be used to navigate over each such element in the WHERE clause of the query, as in
the following:

SELECT OBJECT(o)
FROM Order AS o, IN(o.lineltems) 1
WHERE 1.product.name = 'widget’

5.2.6. WHERE Clause and Conditional Expressions

The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause thus restricts the result of a query.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression

120 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

The following sections describe the languageconstructs that can be used in a conditional expression of
the WHERE clause.

5.2.6.1. Literals

A string literal is enclosed in single quotes—for example: 'literal'. A string literal that includes a single
quote is represented by two single quotes—for example: 'literal"s'. Enterprise Beans QL string literals,
like Java String literals, use unicode character encoding.

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62. Exact
numeric literals support numbers in the range of Java long. Exact numeric literals use the Java integer
literal syntax.

An approximate numeric literal is a numeric value in scientific notation, such as 7E3, -57.9E2, or a
numeric value with a decimal, such as 7., -95.7, +6.2. Approximate numeric literals support numbers in
the range of Java double. Approximate literals use the Java floating point literal syntax.

The Bean Provider may utilize appropriate suffixes to indicate the specific type of the literal in
accordance with the Java Language Specification.

The boolean literals are TRUE and FALSE.

Although predefined reserved literals appear in upper case, they are case insensitive.

5.2.6.2. Identification Variables

All identification variables used in the WHERE clause of an Enterprise Beans QL query must be
declared in the FROM clause, as described in Identification Variables.

Identification variables are existentially quantified in the WHERE clause. This means that an
identification variable represents a member of a collection or an instance of an entity bean’s abstract
schema type. An identification variable never designates a collection in its entirety.

5.2.6.3. Path Expressions

It is illegal to use a collection_valued_path_expression within a WHERE clause as part of a conditional
expression except in an empty_collection_comparison_expression or collection_member_expression.

5.2.6.4. Input Parameters

The following rules apply to input parameters. Input parameters can only be used in the WHERE
clause of a query.

* Input parameters are designated by the question mark (?) prefix followed by an integer. For
example: 71.

 Input parameters are numbered starting from 1.

* The number of distinct input parameters in an Enterprise Beans QL query must not exceed the

Final Jakarta® Enterprise Beans, Optional Features 121

5.2. Enterprise Beans QL Definition

number of input parameters for the finder or select method. It is not required that the Enterprise

Beans QL query use all of the input parameters for the finder or select method.

* An input parameter evaluates to the abstract schema type of the corresponding parameter defined
in the signature of the finder or select method with which the query is associated. It is the
responsibility of the container to map the input parameter to the appropriate abstract schema type

value.

Note that if an input parameter value is null, comparison operations or arithmetic operations

involving the input parameter will return an unknown value. See Null Values.

5.2.6.5. Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical

operations, path expressions that evaluate to boolean values, and boolean literals.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are composed
of other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric

values, and numeric literals.
Arithmetic operations use numeric promotion.
Standard bracketing () for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression 0R
conditional_term

conditional_term ::= conditional_factor | conditional_term AND
conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression

in_expression | null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression

5.2.6.6. Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.

* Navigation operator (.)

* Arithmetic operators:
+, - unary
* [/ multiplication and division

122 Jakarta® Enterprise Beans, Optional Features

Final

5.2. Enterprise Beans QL Definition

+, - addition and subtraction
» Comparison operators: =, >, >=, <, <, <> (not equal)

» Logical operators: NOT, AND, OR

The following sections describe other operators used in specific expressions.

5.2.6.7. Between Expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in an conditional expression is as
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-
expression AND arithmetic-expression

The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Null Values.
Examples are:
p.age BETWEEN 15 and 19 is equivalent to p.age >= 15 AND p.age < 19

p.age NOT BETWEEN 15 and 19 is equivalent to p.age < 15 OR p.age > 19

5.2.6.8. In Expressions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:

cmp_path_expression [NOT] IN ({literal |
input_parameter} [, {literal | input_parameter}]*)

The cmp_path_expression must have a string or numeric value. The literal and/or input_parameter
values must be like the same abstract schema type of the cmp_path_expression in type. (See Equality
and Comparison Semantics).

Examples are:

Final Jakarta® Enterprise Beans, Optional Features 123

5.2. Enterprise Beans QL Definition

o.country IN ('UK', 'US", 'France') is true for UK and false for Peru, and is equivalent to the
expression (o.country = 'UK') OR (o.country = 'US') OR (o.country = 'France').

o.country NOT IN ('UK', 'US', 'France') is false for UK and true for Peru, and is equivalent to the
expression NOT o.country = 'UK') OR (o.country = 'US') OR (o.country = 'France’.

There must be at least one element in the comma separated list that defines the set of values for the IN
expression.

If the value of a cmp_path_expression in an IN or NOT IN expression is NULL or unknown, the value of the
expression is unknown.

5.2.6.9. Like Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as follows:

cmp_path_expression [NOT] LIKE pattern_value
[ESCAPE escape_character]

The cmp_path_expression must have a string value. The pattern_value is a string literal or a string-
valued input parameter in which an underscore () stands for any single character, a percent (%)
character stands for any sequence of characters (including the empty sequence), and all other
characters stand for themselves. The optional escape_character is a single-character string literal or a
character-valued input parameter (i.e., char or Character) and is used to escape the special meaning of
the underscore and percent characters in pattern_value. "

Examples are:

e address.phone LIKE '12%3' is true for '123''12993' and false for '1234'
» asentence.word LIKE 'l _se' is true for 'lose' and false for 'loose’
e aword.underscored LIKE '\ %' ESCAPE '\'is true for' foo' and false for 'bar’

* address.phone NOT LIKE '12%3"is false for '123' and '12993" and true for '1234'

If the value of the cmp_path_expression or pattern_value is NULL or unknown, the value of the LIKE
expression is unknown. If the escape_character is specified and is NULL, the value of the LIKE
expression is unknown.

5.2.6.10. Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:

{single_valued_path_expression | input_parameter} IS
[NOT] NULL

124 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

A null comparison expression tests whether or not the single-valued path expression or input
parameter is a NULL value.

5.2.6.11. Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in an
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT]
EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Note that a collection-valued path expression can only be used in the WHERE clause in an empty
collection comparison expression or in a collection member expression.

The collection designated by the collection-valued path expression used in an empty collection
comparison expression must not be used in the FROM clause for the declaration of an identification
variable. An identification variable declared as a member of a collection implicitly designates the
existence of a non-empty relationship; testing whether the same collection is empty is contradictory.
Therefore, the following query is invalid.

SELECT OBJECT(o)
FROM Order o, IN(o.lineltems) 1
WHERE o.lineItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

5.2.6.12. Collection Member Expressions

The syntax for the use of the comparison operator MEMBER OF " in an collection_member_expression
is as follows:

{single_valued_cmr_path_expression | identification_variable | input_parameter}
[NOT] MEMBER [0F]
collection_valued_path_expression

This expression tests whether the designated value is a member of the collection specified by the
collection-valued path expression.

Final Jakarta® Enterprise Beans, Optional Features 125

5.2. Enterprise Beans QL Definition

Note that a collection-valued path expression can only be used in the WHERE clause in an empty
collection comparison expression or in a collection member expression.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the value
of the collection-valued path expression or single-valued cmr path expression in the collection member
expression is unknown, the value of the collection member expression is unknown.

5.2.6.13. Functional Expressions

Enterprise Beans QL includes the following built-in functions "*, which may be used in the WHERE
clause of a query.

String Functions:

CONCAT(String, String) returns a String

SUBSTRING(String, start, length) returnsa String

LOCATE(String, String [, start]) " returnsan int

LENGTH(String) returns an int

Note that start and length are integer values. The first position in a string is designated as 1 by these
functions.

Arithmetic Functions:

* ABS(number) returns a number (int, float, or double) of the same type as the argument to the
function

e SQRT(double) returns a double

e MOD(int, int) returns an int

Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

5.2.7. SELECT Clause

The SELECT clause denotes the query result. The SELECT clause contains either a single range variable
that ranges over an entity bean abstract schema type, a single-valued path expression, or an aggregate
select expression. In the case of a finder method, the SELECT clause is restricted to contain either a
single range variable or a single-valued path expression that evaluates to the abstract schema type of
the entity bean for which the finder method is defined.

126 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] {select_expression
| 0BJECT (identification_variable)}

select_expression ::= single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{ AVG | MAX | MIN |
SUM | COUNT } ([DISTINCT]
cmp_path_expression) |

COUNT ([DISTINCT] identification_variable |
single_valued_cmr_path_expression)

All standalone identification variables in the SELECT clause must be qualified by the OBJECT operator.
The SELECT clause must not use the OBJECT operator to qualify path expressions.

Note that the SELECT clause must be specified to return a single-valued expression. The query below is
therefore not valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result. If DISTINCT is not specified, duplicate values are not eliminated unless the query is specified for
a method whose result type is java.util.Set. If a query is specified for a method whose result type is
java.util.Set, but does not specify DISTINCT, the container must interpret the query as if SELECT
DISTINCT had been specified. In general, however, the Bean Provider should specify the DISTINCT
keyword when writing queries for methods that return java.util.Set.

The SELECT clause determines the type of the values returned by a query. For example, the following
query returns a collection of products:

SELECT 1.product FROM Order AS o, IN(o.lineItems) 1

It is the responsibility of the container to map the abstract schema types returned by the query to the
Java types that are returned by the finder or select method with which the query is associated and to
materialize those return types, as described in Return Value Types.

5.2.7.1. Null Values in the Query Result

If the result of an Enterprise Beans QL query corresponds to a cmr-field or cmp-field whose value is
null, the container must include that null value in the result that is returned by the finder or select
method. The Bean Provider can use the IS NOT NULL construct to eliminate such null values from the
result set of the query.

Final Jakarta® Enterprise Beans, Optional Features 127

5.2. Enterprise Beans QL Definition

If the finder or select method is a single-object finder or select method, and the result set of the query
consists of a single null value, the container must return the null value as the result of the method. If
the result set of a query for a single-object finder or select method contains more than one value
(whether non-null, null, or a combination), the container must throw the FinderException.

Note, however, that cmp-field types defined in terms of Java numeric primitive types cannot produce
NULL values in the query result. An Enterprise Beans QL query that returns such a cmp-field type as a
result type must not return a null value. (If the Bean Provider wishes to allow null values for cmp-
fields, he or she should specify those cmp-fields to have the equivalent Java object types instead of
primitive types, e.g., Integer rather than int.)

5.2.7.2. Aggregate Functions in the SELECT Clause

The result of an Enterprise Beans QL query may be the result of an aggregate function applied to a
path expression.

The following aggregate functions can be used in the SELECT clause of an Enterprise Beans QL query:
AVG, COUNT, MAX, MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a cmp-field. The path expression argument to COUNT may terminate in
either a cmp-field or a cmr-field, or the argument to COUNT may be an identification variable.

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and MIN
must correspond to orderable cmp-field types (i.e., numeric types, string types, character types, or date

types).

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is applied. *”

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

5.2.7.3. Examples

The following example returns all line items related to some order:

SELECT OBJECT(1)
FROM Order o, IN(o.linelItems) 1

The following query returns all line items regardless of whether a line item is related to any order or
product:

SELECT OBJECT(1)
FROM LineItems AS 1

128 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

The following query returns the average order quantity:

SELECT AVG(o.quantity)
FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(1.price)
FROM Order o, IN(o.lineltems) 1
WHERE o.customer.lastname = 'Smith"' AND o.customer.firstname = 'John'

The following query returns the number of items in John Smith’s entire order.

SELECT COUNT(1)
FROM Order o, IN(o.lineltems) 1
WHERE o.customer.lastname = 'Smith"' AND o.customer.firstname = 'John'

The following query returns the total number of orders.

SELECT COUNT(o)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been
specified.

SELECT COUNT(1.price)
FROM Order o, IN(o.lineltems) 1

WHERE o.customer.lastname = 'Smith"' AND o.customer.firstname = 'John'
Note that this is equivalent to:

SELECT COUNT(1)

FROM Order o, IN(o.lineltems) 1

WHERE o.customer.lastname = 'Smith"' AND o.customer.firstname = 'John'

AND 1.price IS NOT NULL

5.2.8. ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered.

Final Jakarta® Enterprise Beans, Optional Features 129

5.2. Enterprise Beans QL Definition

The syntax of the ORDER BY clause is

orderby_clause ::= 0RDER BY orderby_item [, orderby_item]*
orderby_item ::= cmp_path_expression [ASC | DESC]

When the ORDER BY clause is used in an Enterprise Beans QL query, the SELECT clause of the query
must be one of the following:

1. an identification variable x, denoted as OBJECT(x)
2. asingle_valued_cmr_path_expression

3. acmp_path_expression

In the first two cases, each orderby_item must be an orderable cmp-field of the entity bean abstract
schema type value returned by the SELECT clause. In the third case, the orderby_item must evaluate to
the same cmp-field of the same entity bean abstract schema type as the cmp_path_expression in the
SELECT clause.

For example, the first two queries below are legal, but the third and fourth are not.

SELECT OBJECT(o0)

FROM Customer c, IN(c.orders) o
WHERE c.address.state = 'CA'
ORDER BY o.quantity, o.totalcost

SELECT o.quantity

FROM Customer c, IN(c.orders) o
WHERE c.address.state = 'CA'
ORDER BY o.quantity

SELECT 1.product.product_name
FROM Order o, IN(o.lineltems) 1

WHERE o.customer.lastname = 'Smith"' AND o.customer.firstname = 'John'
ORDER BY 1.product.price

SELECT 1.product.product_name

FROM Order o, IN(o.linelItems) 1

WHERE o.customer.lastname = 'Smith"' AND o.customer.firstname = 'John'

ORDER BY o.quantity

If more than one orderby_item is specified, the left-to-right sequence of the orderby_item elements
determines the precedence, whereby the leftmost orderby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that
descending ordering beused. Ascending ordering is the default.

130 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is
not specified which.

It is the container’s responsibility to ensure that the ordering of the query result is preserved in the
result of the finder or select method if the ORDER BY clause is used.

5.2.9. Return Value Types

The value of a query result, specified by the SELECT clause, is an entity bean abstract schema type, a
cmp-field type, or the result of an aggregate function. The finder or select method with which the
query is associated in the deployment descriptor determines how this result is mapped to the Java type
that is visible as the result of the query method.

How the result type of a query is mapped depends on whether the query is defined for a finder method
on the remote home interface, for a finder method on the local home interface, or for a select method.

* The result type of a query for a finder method must be the entity bean abstract schema type that
corresponds to the entity bean type of the entity bean on whose home interface the finder method
is defined. If the query is used for a finder method defined on the remote home interface of the
bean, the result of the finder method is the entity bean’s remote interface (or a collection of objects
implementing the entity bean’s remote interface). If the finder method is defined on the local home
interface, the result is the entity bean’s local interface (or a collection of objects implementing the
entity bean’s local interface).

« If the result type of a query for a select method is an entity bean abstract schema type, the return
values for the query method are instances of the entity bean’s local interface or instances of the
entity bean’s remote interface, depending on whether the value of the result-type-mapping
deployment descriptor element contained in the query element for the select method is Local or
Remote. The default value for result-type-mappingis Local.

* If the result type of a query used for a select method is an abstract schema type corresponding to a
cmp-field type (excluding queries whose SELECT clause uses one of the aggregate functions AVG,
COUNT, MAX, MIN, SUM), the result type of the select method is as follows:

o If the Java type of the cmp-field is an object type and the select method is a single-object select
method, the result of the select method is an instance of that object type. If the select method is
a multi-object select method, the result is a collection of instances of that type.

o If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select method is a
single-object select method, the result of the select method is that primitive type.

o If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select method is a
multi-object select method, the result of the select method is a collection of values of the
corresponding wrappered type (e.g., Integer).

« If the select method query is an aggregate query, the select method must be a single-object select
method.

o The result type of the select method must be a primitive type, a wrappered type, or an object

Final Jakarta® Enterprise Beans, Optional Features 131

5.2. Enterprise Beans QL Definition

type that is compatible with the standard JDBC conversion mappings for the type of the cmp-
field [6].

o If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result type of the
select method is an object type and there are no values to which the aggregate function can be
applied, the select method returns null.

o If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result type of the
select method is a primitive type and there are no values to which the aggregate function can
be applied, the container must throw the ObjectNotFoundException.

o If the aggregate query uses the COUNT operator, the result of the select method should be an
exact numeric type. If there are no values to which the COUNT method can be applied, the
result of the select method is 0.

The result of a finder or select method may contain a null value if a cmp-field or cmr-field in the query
result is null.

5.2.10. Null Values

When the target of a reference does not exist in the persistent store, its value is regarded as NULL. SQL
92 NULL semantics [7] defines the evaluation of conditional expressions containing NULL values.

The following is a brief description of these semantics:

* Comparison or arithmetic operations with a NULL value always yield an unknown value.

Two NULL values are not considered to be equal, the comparison yields an unknown value.

* Comparison or arithmetic operations with an unknown value always yield an unknown value.

The IS NULL and IS NOT NULL operators convert a NULL cmp-field or single-valued cmr-field value
into the respective TRUE or FALSE value.

* Boolean operators use three valued logic, defined by Definition of the AND Operator, Definition of
the OR Operator, and Definition of the NOT Operator.

Table 4. Definition of the AND

Operator

AND T F U

T T F U
F F F

U U F U

Table 5. Definition of the OR
Operator

132 Jakarta® Enterprise Beans, Optional Features Final

5.2. Enterprise Beans QL Definition

OR T F U
T T T T

T F U
U T U U

Table 6. Definition of

the NOT Operator
NOT
T F
F
U U

Note: Enterprise Beans QL defines the empty string, ", as a string with 0 length, which is not equal to a
NULL value. However, NULL values and empty strings may not always be distinguished when queries are
mapped to some persistent stores. The Bean Provider should therefore not rely on the semantics of
Enterprise Beans QL comparisons involving the empty string and NULL value.

5.2.11. Equality and Comparison Semantics

Enterprise Beans QL only permits the values of like types to be compared. A type is like another type if
they correspond to the same Java language type, or if one is a primitive Java language type and the
other is the wrappered Java class type equivalent (e.g., int and Integer are like types in this sense).
There is one exception to this rule: it is valid to compare numeric values for which the rules of
numeric promotion apply. Conditional expressions attempting to compare non-like type values are
disallowed except for this numeric case.

Note that Enterprise Beans QL permits the arithmetic operators and comparison operators to be
applied to cmp-fields and input parameters of the wrappered Java class equivalents to the
primitive numeric Java types.

Two entity objects of the same abstract schema type are equal if and only if they have the same
primary key value.

5.2.12. Restrictions

Date and time values should use the standard Java long millisecond value. The standard way to
produce millisecond values is to use java.util.Calendar.

Although SQL requires support for fixed decimal comparison in arithmetic expressions, Enterprise
Beans QL does not. For this reason Enterprise Beans QL restricts exact numeric literals to those
without a decimal point (and numerics with a decimal point as an alternate representation for

Final Jakarta® Enterprise Beans, Optional Features 133

5.3. Examples

approximate numeric values).

Support for the BigDecimal and BigInteger types is optional for containers in Enterprise Beans 2.1.
Applications that depend on such types in Enterprise Beans QL queries may not be portable.

Boolean comparison is restricted to = and <>.
Enterprise Beans QL does not support the use of comments.

The data model for container-managed persistence does not currently support inheritance. Therefore,
entity objects of different types cannot be compared. Enterprise Beans QL queries that contain such
comparisons are invalid.

5.3. Examples

The following examples illustrate the syntax and semantics of Enterprise Beans QL. These examples
are based on the example presented in Examples.

5.3.1. Simple Queries

Find all orders:

SELECT OBJECT(o0)
FROM Order o

Find all orders that need to be shipped to California:

SELECT OBJECT(o)
FROM Order o
WHERE o.shipping_address.state = ‘CA’

Find all states for which there are orders:

SELECT DISTINCT o.shipping_address.state
FROM Order o

5.3.2. Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineltems) 1

134 Jakarta® Enterprise Beans, Optional Features Final

5.3. Examples

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT OBJECT(o0)
FROM Order o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

SELECT OBJECT (o)
FROM Order o
WHERE o.lineItems IS EMPTY

Find all pending orders:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineltems) 1
WHERE 1.shipped = FALSE

Find all orders in which the shipping address differs from the billing address. This example assumes
that the Bean Provider uses two distinct entity beans to designate shipping and billing addresses, as in
Several Entity Beans with Abstract Persistence Schemas Defined in the Same Ejb-jar File..

SELECT OBJECT(o)

FROM Order o

WHERE

NOT (o.shipping_address.state
o.shipping_address.city =
0.shipping_address.street

0.billing_address.state AND
.billing_address.city AND
0.billing_address.street)

I o

If the Bean Provider uses a single entity bean in two different relationships for both the shipping
address and the billing address, the above expression can be simplified based on the equality rules
defined in Equality and Comparison Semantics. The query can then be written as:

SELECT OBJECT(o)
FROM Order o
WHERE o.shipping_address <> o.billing_address

The query checks whether the same entity bean abstract schema type instance (identified by its
primary key) is related to an order through two distinct relationships.

Final Jakarta® Enterprise Beans, Optional Features 135

5.3. Examples

Find all orders for a book titled 'Applying Enterprise Beans: Component-Based Development for the
J2EE Platform':

SELECT DISTINCT OBJECT(o)

FROM Order o, IN(o.lineltems) 1

WHERE 1.product.type = 'book' AND
1.product.name = "Applying Enterprise Beans:
Component-Based Development for the J2EE Platform'

5.3.3. Queries Using Input Parameters
The following query finds the orders for a product whose name is designated by an input parameter:
SELECT DISTINCT OBJECT(o)

FROM Order o, IN(o.lineltems) 1
WHERE 1.product.name = ?1

For this query, the input parameter must be of the type of the cmp-field name, i.e., a string.

5.3.4. Queries for Select Methods

The following select queries illustrate the selection of values other than entity beans.

The following Enterprise Beans QL query selects the names of all products that have been ordered.

SELECT DISTINCT 1.product.name
FROM Order o, IN(o.lineltems) 1

The following query finds the names of all products in the order specified by a particular order
number. The order number is specified by a parameter that corresponds to the primary key of Order.
Note that because this query does not specify DISTINCT in its SELECT clause, if it is specified for a
query method whose return type is java.util.Collection, the collection that is returned may contain
duplicates. In this example, such duplicates correspond to products that have been ordered multiple
times in the given order.

SELECT 1.product.name
FROM Order o, IN(o.lineltems) 1
WHERE o.ordernumber = ?1

It is the responsibility of the container to interpret the query such that no duplicates are produced if
the result type of the query method is java.util.Set.

136 Jakarta® Enterprise Beans, Optional Features Final

5.3. Examples

Consider the following query for a select method:

SELECT o.shipping_address.city
FROM Order o

This query returns the names of all the cities of the shipping addresses of all orders. The result type of
the select method, which is either java.util.Collection or java.util.Set, determines whether the
query may return duplicate city names.

5.3.5. Enterprise Beans QL and SQL

Enterprise Beans QL, like SQL, treats the FROM clause as a cartesian product. The FROM clause is
similar to that of SQL in that the declared identification variables affect the results of the query even if
they are not used in the WHERE clause. The Bean Provider should use caution in defining
identification variables because the domain of the query can depend on whether there are any values
of the declared type.

For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are no Product instances in the persistent store, the domain of the query is empty
and no order is selected.

SELECT OBJECT(o)
FROM Order AS o, IN(o.lineItems) 1, Product p

The container can represent the abstract schemas of a set of entity beans in an application using a
relational database. There are multiple ways to define a mapping to a set of tables in a relational
database. Although this area is beyond the scope of this specification, a sample mapping and
translation of Enterprise Beans QL to SQL is described to clarify the semantics of Enterprise Beans QL.

A mapping strategy from a set of entity beans to a relational database might be to map each entity
bean to a separate table. One-to-many relationships may be represented by foreign keys in the related
table from the many side and many-to-many relationships may be represented by using an auxiliary
table that contains the primary keys of the related objects.

Because the FROM clause represents a cartesian product, the SQL result may contain duplicates. If the
query is for a method whose return type is java.util.Set, the container would therefore typically
utilize a SELECT DISTINCT clause in translating the query to SQL. The query method result may
contain duplicates if the return type of the query method is java.util.Collection and DISTINCT is not
specified in the SELECT clause of the Enterprise Beans QL query.

The following translation example illustrates the mapping of entity beans to relational database tables.
The entity bean OrderE]B is represented by the table ORDER and the entity bean LineltemE]B is
represented by the table LINEITEM. The column OKEY represents the primary key for OrderE]B entity
bean, FKEY represents the foreign key column of LINEITEM that holds the values of the ORDER

Final Jakarta® Enterprise Beans, Optional Features 137

5.4. Enterprise Beans QL BNF

primary keys. FKEY is defined in the LINEITEM table to model the one-to-many relationship.

Using this mapping, the following Enterprise Beans QL finder query

SELECT OBJECT(o)
FROM Order o, IN(o.lineltems) 1
WHERE 1.quantity > 5

might be represented in SQL as

SELECT DISTINCT o.OKEY
FROM ORDERBEAN o, LINEITEM 1
WHERE o.0KEY = T1.FKEY AND T.QUANTITY > 5

5.4. Enterprise Beans QL BNF

Enterprise Beans QL BNF notation summary:

* {... } grouping
* [...] optional constructs

* boldface keywords

The following is the complete BNF notation for Enterprise Beans QL:

Enterprise Beans QL ::= select_clause from_clause [where_clause] [orderby_clause]

from_clause ::= FROM identification_variable_declaration
[, identification_variable_declaration]*
identification_variable_declaration ::=
collection_member_declaration | range_variable_declaration

collection_member_declaration ::= IN (collection_valued_path_expression)

[AS] identifier

range_variable_declaration ::= abstract_schema_name [AS] identifier

cmp_path_expression ::=
{identification_variable | single_valued_cmr_path_expression}.cmp_field
single_valued_cmr_path_expression ::=

identification_variable.[single_valued_cmr_field.]* single_valued_cmr_field

single_valued_path_expression ::=
cmp_path_expression | single_valued_cmr_path_expression
collection_valued_path_expression ::=

identification_variable.[single_valued_cmr_field.]* collection_valued_cmr_field

select_clause ::= SELECT [DISTINCT]
{select_expression | 0BJECT(identification_variable)}

138 Jakarta® Enterprise Beans, Optional Features

Final

5.4. Enterprise Beans QL BNF

select_expression ::=

single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{AVG | MAX | MIN |
SUM | COUNT} ([DISTINCT]
cmp_path_expression) |

COUNT ([DISTINCT] identification_variable |
single_valued_cmr_path_expression)

where_clause ::= WHERE conditional_expression

conditional_expression ::= conditional_term | conditional_expression 0R
conditional_term

conditional_term ::= conditional_factor | conditional_term AND
conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression

in_expression | null_comparison_expression |

empty_collection_comparison_expression |

collection_member_expression
between_expression ::= arithmetic_expression [NOT]
BETWEEN

arithmetic_expression AND arithmetic_expression
in_expression ::=

cmp_path_expression [NOT] IN

({literal | input_parameter} [, {literal | input_parameter}]*)
like_expression ::=_

cmp_path_expression [NOT] LIKE pattern_value
[ESCAPE escape_character]
null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS
[NOT] NULL
empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT]
EMPTY
collection_member_expression ::=

{single_valued_cmr_path_expression | identification_variable | input_parameter}

[NOT] MEMBER [0F]

collection_valued_path_expression
comparison_expression ::=

string_value comparison_operator string_expression |

boolean_value { = | <> } boolean_expression} |

datetime_value comparison_operator datetime_expression |

entity_bean_value { = | <> }
entity_bean_expression |

arithmetic_value comparison_operator arithmetic_expression
arithmetic_value ::= cmp_path_expression | functions_returning_numerics
comparison_operator ::= = | > | >= |
< | <= | <>

Final Jakarta® Enterprise Beans, Optional Features 139

5.4. Enterprise Beans QL BNF

arithmetic_expression ::= arithmetic_term | arithmetic_expression { + |

- } arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term { * |

/ } arithmetic_factor

arithmetic_factor ::= [{ + | - }] arithmetic_primary

arithmetic_primary ::= cmp_path_expression | literal | (arithmetic_expression) |
input_parameter | functions_returning_numerics

string_value ::= cmp_path_expression | functions_returning_strings

string_expression ::= string_primary | input_parameter

string_primary ::= cmp_path_expression | literal | (string_expression) |
functions_returning_strings

datetime_value ::= cmp_path_expression

datetime_expression ::= datetime_value | input_parameter

boolean_value ::= cmp_path_expression

boolean_expression ::= cmp_path_expression | literal | input_parameter

entity_bean_value ::= single_valued_cmr_path_expression | identification_variable

entity_bean_expression ::= entity_bean_value | input_parameter

functions_returning_strings ::= CONCAT(string_expression,

string_expression) |
SUBSTRING(string_expression, arithmetic_expression,
arithmetic_expression)
functions_returning_numerics::= LENGTH(string_expression) |
LOCATE(string_expression, string_expression[,
arithmetic_expression]) |
ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
M0OD(arithmetic_expression, arithmetic_expression)
orderby_clause ::= 0RDER BY orderby_item [, orderby_item]*
orderby_item ::= cmp_path_expression [ASC | DESC]

[14] Not currently used in Enterprise Beans QL; reserved for future use.

[15] Use of ejb-names in EJB QL is reserved for future use.

[16] Refer to [7] for a more precise characterization of these rules.

[17] The use of the reserved word OF is optional in this expression.

[18] These functions are a subset of the functions defined for JDBC 2.0 and later drivers, as described in Appendix D of
the JDBC specification [6].

[19] Containers and databases may not support the use of the optional, third argument of the LOCATE function. Portable
applications should therefore avoid use of this argument.

[20] It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.

140 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

Chapter 6. Enterprise Beans 2.1 Entity Bean
Component Contract for Bean-Managed
Persistence

The entity bean component contract for bean-managed persistence is the contract between an entity
bean and its container. It defines the life cycle of the entity bean instances and the model for method
delegation of the client-invoked business methods. The main goal of this contract is to ensure that a
component using bean-managed persistence is portable across all compliant Enterprise Beans
containers.

This chapter defines the Enterprise Bean Provider’s view of this contract and the Container Provider’s
responsibility for managing the life cycle of the enterprise bean instances. It also describes the Bean
Provider’s responsibilities when persistence is provided by the Bean Provider.

Note that use of dependency injection, interceptors, and Java language metadata annotations is not
supported for Enterprise Beans 2.1 entity beans.

6.1. Overview of Bean-Managed Entity Persistence

An entity bean implements an object view of an entity stored in an underlying database, or an entity
implemented by an existing enterprise application (for example, by a mainframe program or by an
ERP application). The data access protocol for transferring the state of the entity between the entity
bean instances and the underlying database is referred to as object persistence.

The entity bean component protocol for bean-managed persistence allows the entity Bean Provider to
implement the entity bean’s persistence directly in the entity bean class or in one or more helper
classes provided with the entity bean class. This chapter describes the contracts for bean-managed
persistence.

Final Jakarta® Enterprise Beans, Optional Features 141

6.1. Overview of Bean-Managed Entity Persistence

(a) Entity bean is an object view of a record in the database

4)

container

) Account
entity bean Account 100

- J

(b) Entity bean is an object view of an existing application

4)

container

) Account
—(Sban)

- J

—>

exisiting
application Account 100

Figure 10. Client View of Underlying Data Sources Accessed Through Entity Bean

6.1.1. Entity Bean Provider’s View of Persistence

Using bean-managed persistence, the entity Bean Provider writes database access calls (e.g. using
JDBC™ or SQLJ) directly in the entity bean component. The data access calls are performed in the
ejbCreate<METHOD>, ejbRemove, ejbFind<METHOD>, ejbLoad, and ejbStore methods, and/or in the business
methods.

The data access calls can be coded directly into the entity bean class, or they can be encapsulated in a
data access component that is part of the entity bean. Directly coding data access calls in the entity
bean class may make it more difficult to adapt the entity bean to work with a database that has a
different schema, or with a different type of database.

We expect that most enterprise beans with bean-managed persistence will be created by application
development tools which will encapsulate data access in components. These data access components will
probably not be the same for all tools. Further, if the data access calls are encapsulated in data access
components, the data access components may require deployment interfaces to allow adapting data
access to different schemas or even to a different database type. This Enterprise Beans specification does

142 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

not define the architecture for data access objects, strategies for tailoring and deploying data access
components or ensuring portability of these components for bean-managed persistence.

6.1.2. Runtime Execution Model

This section describes the runtime model and the classes used in the description of the contract
between an entity bean with bean-managed persistence and its container.

enterprise bean
instances

enterprise bean 1 J

~

enterprise bean
instances

enterprise bean Zj

_/

Classes are provided by

Classes generated by : :
Container Provider tools . Bean Provider

Figure 11. Overview of the Entity Bean Runtime Execution Model
An enterprise bean instance is an object whose class is provided by the Bean Provider.

An entity EJBObject or EJBLocalObject is an object whose class is generated at deployment time by
the Container Provider’s tools. The entity EJBObject class implements the entity bean’s remote
interface. The entity EJBLocalObject class implements the entity bean’s local interface. A client never
references an entity bean instance directly—a client always references an entity EJBObject or entity
EJBLocalObject whose class is generated by the Container Provider’s tools.

An entity EJBHome or EJBLocalHome object provides the life cycle operations (create, remove, find)
for its entity objects as well as home business methods, which are not specific to an entity bean
instance. The class for the entity EJBHome or E]JBLocalHome object is generated by the Container

Final Jakarta® Enterprise Beans, Optional Features 143

6.1. Overview of Bean-Managed Entity Persistence

Provider’s tools at deployment time. The entity EJBHome or EJBLocalHome object implements the
entity bean’s home interface that was defined by the Bean Provider.

6.1.3. Instance Life Cycle

does not instance throws
(exist > < system exception
~ from any method
1. newlnstance() 1. unsetEntityContext()

2. setEntityContext(ec)

A4
ejbHome<METHOD>(...) Q(pooled p
N

g bFind<METHOD>(...)

€jbCreate<M ETHOD>(args) €jbPassivate()
€jbPostCreate<M ETHOD>(args) gjbRemove()
gjbActivate()
ejbLoad() ~
(ready > bStore)
business methods
ejbTimeout(arg)

Figure 12. Life Cycle of an Entity Bean Instance.
An entity bean instance is in one of the following three states:

e It does not exist.

* Pooled state. An instance in the pooled state is not associated with any particular entity object
identity.

* Ready state. An instance in the ready state is assigned an entity object identity.
The following steps describe the life cycle of an entity bean instance:

* An entity bean instance’s life starts when the container creates the instance using newlInstance.
The container then invokes the setEntityContext method to pass the instance a reference to the
EntityContext interface. The EntityContext interface allows the instance to invoke services provided
by the container and to obtain the information about the caller of a client-invoked method.

* The instance enters the pool of available instances. Each entity bean has its own pool. While the

144 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

instance is in the available pool, the instance is not associated with any particular entity object
identity. All instances in the pool are considered equivalent, and therefore any instance can be
assigned by the container to any entity object identity at the transition to the ready state. While the
instance is in the pooled state, the container may use the instance to execute any of the entity
bean’s finder methods (shown as ejbFind<METHOD> in the diagram) or home methods (shown as
ejbHome<METHOD> in the diagram). The instance does not move to the ready state during the
execution of a finder or a home method.

* An instance transitions from the pooled state to the ready state when the container selects that
instance to service a client call to an entity object or an ejbTimeout method. There are two possible
transitions from the pooled to the ready state: through the ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods, or through the ejbActivate method. The container invokes the
ejbCreate<METHOD> and ejbPostCreate<METHOD> methods when the instance is assigned to an entity
object during entity object creation (i.e., when the client invokes a create<METHOD> method on the
entity bean’s home object). The container invokes the ejbActivate method on an instance when an
instance needs to be activated to service an invocation on an existing entity object—this occurs
because there is no suitable instance in the ready state to service the client’s call or the ejbTimeout
method.

* When an entity bean instance is in the ready state, the instance is associated with a specific entity
object identity. While the instance is in the ready state, the container can invoke the ejblLoad and
ejbStore methods zero or more times. A business method can be invoked on the instance zero or
more times. The ejbTimeout method can be invoked on the instance zero or more times. Invocations
of the ejblLoad and ejbStore methods can be arbitrarily mixed with invocations of business methods
or the ejbTimeout method. The purpose of the ejblLoad and ejbStore methods is to synchronize the
state of the instance with the state of the entity in the underlying data source—the container can
invoke these methods whenever it determines a need to synchronize the instance’s state.

* The container can choose to passivate an entity bean instance within a transaction. To passivate an
instance, the container first invokes the ejbStore method to allow the instance to synchronize the
database state with the instance’s state, and then the container invokes the ejbPassivate method to
return the instance to the pooled state.

* Eventually, the container will transition the instance to the pooled state. There are three possible
transitions from the ready to the pooled state: through the ejbPassivate method, through the
ejbRemove method, and because of a transaction rollback for ejbCreate, ejbPostCreate, or ejbRemove
(not shown in Life Cycle of an Entity Bean Instance.). The container invokes the ejbPassivate
method when the container wants to disassociate the instance from the entity object identity
without removing the entity object. The container invokes the ejbRemove method when the
container is removing the entity object (i.e., when the client invoked the remove method on the
entity object’s component interface, or a remove method on the entity bean’s home interface). If
ejbCreate, ejbPost(Create, or ejbRemove is called and the transaction rolls back, the container will
transition the bean instance to the pooled state.

* When the instance is put back into the pool, it is no longer associated with an entity object identity.
The container can assign the instance to any entity object within the same entity bean home.

* An instance in the pool can be removed by calling the unsetEntityContext method on the instance.

Final Jakarta® Enterprise Beans, Optional Features 145

6.1. Overview of Bean-Managed Entity Persistence

Notes:

1. The EntityContext interface passed by the container to the instance in the setEntityContext method
is an interface, not a class that contains static information. For example, the result of the
EntityContext.getPrimaryKey method might be different each time an instance moves from the
pooled state to the ready state, and the result of the getCallerPrincipal and isCallerInRole methods
may be different in each business method.

2. A RuntimeException thrown from any method of the entity bean class (including the business
methods and the callbacks invoked by the container) results in the transition to the “does not exist”
state. The container must not invoke any method on the instance after a RuntimeException has been
caught. From the client perspective, the corresponding entity object continues to exist. The client
can continue accessing the entity object through its component interface because the container can
use a different entity bean instance to delegate the client’s requests. Exception handling is
described further in Exception Handling.

3. The container is not required to maintain a pool of instances in the pooled state. The pooling
approach is an example of a possible implementation, but it is not the required implementation.
Whether the container uses a pool or not has no bearing on the entity bean coding style.

6.1.4. The Entity Bean Component Contract

This section specifies the contract between an entity bean with bean-managed persistence and its
container.

6.1.4.1. Entity Bean Instance’s View

The following describes the entity bean instance’s view of the contract:
The Bean Provider is responsible for implementing the following methods in the entity bean class:

* A public constructor that takes no arguments. The container uses this constructor to create
instances of the entity bean class.

e public void setEntityContext(EntityContext ic);

A container uses this method to pass a reference to the EntityContext interface to the entity bean
instance. If the entity bean instance needs to use the EntityContext interface during its lifetime, it
must remember the EntityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Enterprise Beans Core
Contracts and Requirements document [2] for how the container executes methods with an
unspecified transaction context). An identity of an entity object is not available during this method.

The instance can take advantage of the setEntityContext method to allocate any resources that are
to be held by the instance for its lifetime. Such resources cannot be specific to an entity object
identity because the instance might be reused during its lifetime to serve multiple entity object
identities.

146 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

e public void unsetEntityContext();
A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity object is not
available during this method.

The instance can take advantage of the unsetEntityContext method to free any resources that are
held by the instance. (These resources typically had been allocated by the setEntityContext
method.)

* public PrimaryKeyClass ejbCreate<METHOD>(:--);

There are zero “ or more ejbCreate<METHOD> methods, whose signatures match the signatures of
the create<METHOD> methods of the entity bean home interface. The container invokes an
ejbCreate<METHOD> method on an entity bean instance when a client invokes a matching
create<METHOD> method to create an entity object.

The implementation of the ejbCreate<METHOD> method typically validates the client-supplied
arguments, and inserts a record representing the entity object into the database. The method also
initializes the instance’s variables. The ejbCreate<METHOD> method must return the primary key for
the created entity object.

An ejbCreate<METHOD> method executes in the transaction context determined by the transaction
attribute of the matching create<METHOD> method, as described in Enterprise Beans Core Contracts
and Requirements document [2] Subsection “Container-Managed Transaction Demarcation for
Business Methods”.

* public void ejbPostCreate<METHOD>(:**);

For each ejbCreate<METHOD> method, there is a matching ejbPostCreate<METHOD> method that has the
same input parameters but whose return value is void. The container invokes the matching
ejbPostCreate<METHOD> method on an instance after it invokes the ejbCreate<METHOD> method
with the same arguments. The entity object identity is available during the ejbPostCreate<METHOD>
method. The instance may, for example, obtain the component interface of the associated entity
object and pass it to another enterprise bean as a method argument.

An ejbPostCreate<METHOD> method executes in the same transaction context as the previous
ejbCreate<METHOD> method.

* public void ejbActivate();

The container invokes this method on the instance when the container picks the instance from the
pool and assigns it to a specific entity object identity. The ejbActivate method gives the entity bean
instance the chance to acquire additional resources that it needs while it is in the ready state.

This method executes with an unspecified transaction context. The instance can obtain the identity
of the entity object via the getPrimaryKey, getEJBLocalObject, or getEJBObject method on the entity

Final Jakarta® Enterprise Beans, Optional Features 147

6.1. Overview of Bean-Managed Entity Persistence

context. The instance can rely on the fact that the primary key and entity object identity will
remain associated with the instance until the completion of ejbPassivate or ejbRemove.

Note that the instance should not use the ejbActivate method to read the state of the entity from
the database; the instance should load its state only in the ejbLoad method.

* public void ejbPassivate();

The container invokes this method on an instance when the container decides to disassociate the
instance from an entity object identity, and to put the instance back into the pool of available
instances. The ejbPassivate method gives the instance the chance to release any resources that
should not be held while the instance is in the pool. (These resources typically had been allocated
during the ejbActivate method.)

This method executes with an unspecified transaction context. The instance can still obtain the
identity of the entity object via the getPrimaryKey, getEJBLocalObject, or getEJBObject method of the
EntityContext interface.

Note that an instance should not use the ejbPassivate method to write its state to the database; an
instance should store its state only in the ejbStore method.

* public void ejbRemove();

The container invokes this method on an instance as a result of a client’s invoking a remove method.
The instance is in the ready state when ejbRemove is invoked and it will be entered into the pool
when the method completes.

This method executes in the transaction context determined by the transaction attribute of the
remove method that triggered the ejbRemove method. The instance can still obtain the identity of the
entity object via the getPrimaryKey, getEJBLocalObject, or getEJBObject method of the EntityContext
interface.

The container synchronizes the instance’s state before it invokes the ejbRemove method. This means
that the state of the instance variables at the beginning of the ejbRemove method is the same as it
would be at the beginning of a business method.

An entity bean instance should use this method to remove the entity object’s representation from
the database.

Since the instance will be entered into the pool, the state of the instance at the end of this method
must be equivalent to the state of a passivated instance. This means that the instance must release
any resource that it would normally release in the ejbPassivate method.

* public void ejbload();

The container invokes this method on an instance in the ready state to inform the instance that it
should synchronize the entity state cached in its instance variables from the entity state in the
database. The instance should be prepared for the container to invoke this method at any time that

148 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

the instance is in the ready state.

If the instance is caching the entity state (or parts of the entity state), the instance should not use
the previously cached state in the subsequent business method. The instance may take advantage
of the ejbLoad method, for example, to refresh the cached state by reading it from the database.

This method executes in the transaction context determined by the transaction attribute of the
business method or ejbTimeout method that triggered the ejbLoad method.

* public void ejbStore();

The container invokes this method on an instance to inform the instance that the instance should
synchronize the entity state in the database with the entity state cached in its instance variables.
The instance should be prepared for the container to invoke this method at any time that the
instance is in the ready state.

An instance should write any updates cached in the instance variables to the database in the
ejbStore method.

This method executes in the same transaction context as the previous ejbLoad or ejbCreate<METHOD>
method invoked on the instance. All business methods or the ejbTimeout method invoked between
the previous ejbload or ejbCreate<METHOD> method and this ejbStore method are also invoked in the
same transaction context.

* public <primary key type or collection> ejbFind<METHOD>(::-);

The container invokes this method on the instance when the container selects the instance to
execute a matching client-invoked find<METHOD> method. The instance is in the pooled state (i.e., it is
not assigned to any particular entity object identity) when the container selects the instance to
execute the ejbFind<METHOD> method on it, and it is returned to the pooled state when the execution
of the ejbFind<METHOD> method completes.

The ejbFind<METHOD> method executes in the transaction context determined by the transaction
attribute of the matching find method, as described in Enterprise Beans Core Contracts and
Requirements document [2] Subsection “Container-Managed Transaction Demarcation for Business
Methods”.

The implementation of an ejbFind<METHOD> method typically uses the method’s arguments to locate
the requested entity object or a collection of entity objects in the database. The method must return
a primary key or a collection of primary keys to the container (see Finder Method Return Type).

* public <type> ejbHome<METHOD>(:*+);

The container invokes this method on any instance when the container selects the instance to
execute a matching client-invoked <METHOD> home method. The instance is in the pooled state (i.e., it
is not assigned to any particular entity object identity) when the container selects the instance to
execute the ejbHome<METHOD> method on it, and it is returned to the pooled state when the execution

Final Jakarta® Enterprise Beans, Optional Features 149

6.1. Overview of Bean-Managed Entity Persistence

of the ejbHome<METHOD> method completes.

The ejbHome<METHOD> method executes in the transaction context determined by the transaction
attribute of the matching <METHOD> home method, as described in Enterprise Beans Core Contracts
and Requirements document [2] Subsection “Container-Managed Transaction Demarcation for
Business Methods”.

e public void ejbTimeout(:**);

The container invokes the ejbTimeout method on an instance when a timer for the instance has
expired. The ejbTimeout method notifies the instance of the time-based event and allows the
instance to execute the business logic to handle it.

The ejbTimeout method executes in the transaction context determined by its transaction attribute.

6.1.4.2. Container’s View

This subsection describes the container’s view of the state management contract. The container must
call the following methods:

* public void setEntityContext(ec);

The container invokes this method to pass a reference to the EntityContext interface to the entity
bean instance. The container must invoke this method after it creates the instance, and before it
puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point, the
EntityContext is not associated with any entity object identity.

e public void unsetEntityContext();

The container invokes this method when the container wants to reduce the number of instances in
the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.

* public PrimaryKeyClass ejbCreate<METHOD>(++);
public void ejbPostCreate<METHOD>(:*");

The container invokes these two methods during the creation of an entity object as a result of a
client invoking a create<METHOD> method on the entity bean’s home interface.

The container first invokes the ejbCreate<METHOD> method whose signature matches the
create<METHOD> method invoked by the client. The ejbCreate<METHOD> method returns a primary key
for the created entity object. The container creates an entity EJBObject reference and/or
EJBLocalObject reference for the primary key. The container then invokes a matching
ejbPostCreate<METHOD> method to allow the instance to fully initialize itself. Finally, the container
returns the entity object’s remote interface (i.e., a reference to the entity EJBObject) to the client if

150 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

the client is a remote client, or the entity object’s local interface (i.e., a reference to the entity
EJBLocalObject) to the client if the client is a local client.

The container must invoke the ejbCreate<METHOD> and ejbPostCreate<METHOD> methods in the
transaction context determined by the transaction attribute of the matching create<METHOD>
method, as described in Enterprise Beans Core Contracts and Requirements document [2]
Subsection “Container-Managed Transaction Demarcation for Business Methods”.

* public void ejbActivate();

The container invokes this method on an entity bean instance at activation time (i.e., when the
instance is taken from the pool and assigned to an entity object identity). The container must
ensure that the primary key of the associated entity object is available to the instance if the
instance invokes the getPrimaryKey, getEJBLocalObject, or getEJBObject method on its EntityContext
interface.

The container invokes this method with an unspecified transaction context.

Note that instance is not yet ready for the delivery of a business method. The container must still
invoke the ejbLoad method prior to a business method or ejbTimeout method invocation.

* public void ejbPassivate();

The container invokes this method on an entity bean instance at passivation time (i.e., when the
instance is being disassociated from an entity object identity and moved into the pool). The
container must ensure that the identity of the associated entity object is still available to the
instance if the instance invokes the getPrimaryKey, getEJBLocalObject, or getEJBObject method on its
entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first invoke
the ejbStore method on the instance before it invokes ejbPassivate on it.

* public void ejbRemove();

The container invokes this method before it ends the life of an entity object as a result of a client
invoking a remove operation.

The container invokes this method in the transaction context determined by the transaction
attribute of the invoked remove method. The container must ensure that the identity of the
associated entity object is still available to the instance in the ejbRemove method (i.e., the instance
can invoke the getPrimaryKey, getEJBLocalObject, or getEJBObject method on its EntityContext in the
ejbRemove method).

The container must ensure that the instance’s state is synchronized from the state in the database
before invoking the ejbRemove method (i.e., if the instance is not already synchronized from the
state in the database, the container must invoke ejblLoad before it invokes ejbRemove).

Final Jakarta® Enterprise Beans, Optional Features 151

6.1. Overview of Bean-Managed Entity Persistence

* public void ejbload();

The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its instance state from its state in the database. The exact times that the
container invokes ejbLoad depend on the configuration of the component and the container, and
are not defined by the Enterprise Beans architecture. Typically, the container will call ejbLoad
before the first business method within a transaction or before invoking the ejbTimeout method to
ensure that the instance can refresh its cached state of the entity object from the database. After
the first ejbLoad within a transaction, the container is not required to recognize that the state of the
entity object in the database has been changed by another transaction, and it is not required to
notify the instance of this change via another ejblLoad call.

The container must invoke this method in the transaction context determined by the transaction
attribute of the business method or ejbTimeout method that triggered the ejbLoad method.

* public void ejbStore();

The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its state in the database with the state of the instance’s fields. This
synchronization always happens at the end of a transaction, unless the bean is specified as read-
only (see Read-only Entity Beans). However, the container may also invoke this method when it
passivates the instance in the middle of a transaction, or when it needs to transfer the most recent
state of the entity object to another instance for the same entity object in the same transaction (see
Enterprise Beans Core Contracts and Requirements document [2] Subsection “Access from Multiple
Clients in the Same Transaction Context”).

The container must invoke this method in the same transaction context as the previously invoked
ejbload, ejbCreate<METHOD>, or ejbTimeout method.

* public <primary key type or collection> ejbFind<METHOD>(:-);

The container invokes the ejbFind<METHOD> method on an instance when a client invokes a
matching find<METHOD> method on the entity bean’s home interface. The container must pick an
instance that is in the pooled state (i.e., the instance is not associated with any entity object identity)
for the execution of the ejbFind<METHOD> method. If there is no instance in the pooled state, the
container creates one and calls the setEntityContext method on the instance before dispatching the
finder method.

Before invoking the ejbFind<METHOD> method, the container must first synchronize the state of any
non-read-only entity bean instances that are participating in the same transaction context as is
used to execute the ejbFind<METHOD> by invoking the ejbStore method on those entity bean
instances. **

After the ejbFind<METHOD> method completes, the instance remains in the pooled state. The
container may, but is not required to, immediately activate the objects that were located by the
finder using the transition through the ejbActivate method.

152 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

The container must invoke the ejbFind<METHOD> method in the transaction context determined by
the transaction attribute of the matching find method, as described in Enterprise Beans Core
Contracts and Requirements document [2] Subsection “Container-Managed Transaction
Demarcation for Business Methods”.

If the ejbFind<METHOD> method is declared to return a single primary key, the container creates an
entity EJBObject reference for the primary key and returns it to the client if the client is a remote
client. If the client is a local client, the container creates and returns an entity EJBLocalObject
reference for the primary key. If the ejbFind<METHOD> method is declared to return a collection of
primary keys, the container creates a collection of entity EJBObject or EJBLocalObject references
for the primary keys returned from ejbFind<METHOD>, and returns the collection to the client. (See
Finder Method Return Type for information on collections.)

* public <type> ejbHome<METHOD>(:++);

The container invokes the ejbHome<METHOD> method on an instance when a client invokes a
matching <METHOD> home method on the entity bean’s home interface. The container must pick an
instance that is in the pooled state (i.e., the instance is not associated with any entity object identity)
for the execution of the ejbHome<METHOD> method. If there is no instance in the pooled state, the
container creates one and calls the setEntityContext method on the instance before dispatching the
home method.

After the ejbHome<METHOD> method completes, the instance remains in the pooled state.

The container must invoke the ejbHome<METHOD> method in the transaction context determined by
the transaction attribute of the matching <METHOD> home method, as described in Enterprise Beans
Core Contracts and Requirements document [2] Subsection “Container-Managed Transaction
Demarcation for Business Methods”.

* public void ejbTimeout(:+);

The container invokes the ejbTimeout method on the instance when a timer with which the entity
has been registered expires. If there is no suitable instance in the ready state, the container must
activate an instance, invoking the ejbActivate method and transitioning it to the ready state.

The container invokes the ejbTimeout method in the context of a transaction determined by its

transaction attribute.

6.1.5. Read-only Entity Beans

Compliant implementations of this specification may optionally support read-only entity beans. A read-
only entity bean is an entity bean whose instances are not intended to be updated and/or created by
the application. Read-only beans are best suited for situations where the underlying data never
changes or changes infrequently.

Containers that support read-only beans do not call the ejbStore method on them. The ejbLoad method

Final Jakarta® Enterprise Beans, Optional Features 153

6.1. Overview of Bean-Managed Entity Persistence

should typically be called by the container when the state of the bean instance is initially loaded from
the database, or at designated refresh intervals.

If a read-only bean is used, the state of such a bean should not be updated by the application, and the
behavior is unspecified if this occurs. **

Read-only beans are designated by vendor-specific means that are outside the scope of this
specification, and their use is therefore not portable.

6.1.6. The EntityContext Interface

A container provides the entity bean instances with an EntityContext, which gives the entity bean
instance access to the instance’s context maintained by the container. The EntityContext interface has
the following methods:

» The getEJBObject method returns the entity bean’s remote interface.

* The getEJBHome method returns the entity bean’s remote home interface.

* The getEJBLocalObject method returns the entity bean’s local interface.

* The getEJBLocalHome method returns the entity bean’s local home interface.

» The getCallerPrincipal method returns the java.security.Principal that identifies the invoker.

» The isCallerInRole method tests if the entity bean instance’s caller has a particular role.

* The setRollbackOnly method allows the instance to mark the current transaction such that the only
outcome of the transaction is a rollback.

» The getRollbackOnly method allows the instance to test if the current transaction has been marked
for rollback.

* The getPrimaryKey method returns the entity bean’s primary key.
* The getTimerService method returns the jakarta.ejb.TimerService interface.

* The getUserTransaction method returns the jakarta.transaction.UserTransaction interface. Entity
bean instances must not call this method.

* The lookup method enables the entity bean to look up its environment entries in the JNDI naming
context.

6.1.7. Operations Allowed in the Methods of the Entity Bean Class

Operations Allowed in the Methods of an Entity Bean defines the methods of an entity bean class in
which the enterprise bean instances can access the methods of the jakarta.ejb.EntityContext
interface, the java:comp/env environment naming context, resource managers, TimerService and Timer
methods, the EntityManagerFactory and EntityManager methods, and other enterprise beans.

If an entity bean instance attempts to invoke a method of the EntityContext interface, and the access is
not allowed in Operations Allowed in the Methods of an Entity Bean, the container must throw the

154 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

java.lang.I1legalStateException.

If an entity bean instance attempts to invoke a method of the TimerService or Timer interface and the
access is not allowed in Operations Allowed in the Methods of an Entity Bean, the container must
throw the java.lang.I1llegalStateException.

If an entity bean instance attempts to access a resource manager, an enterprise bean, or an entity
manager or entity manager factory, and the access is not allowed in Operations Allowed in the
Methods of an Entity Bean, the behavior is undefined by the Enterprise Beans architecture.

Table 7. Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations
constructor -

setEntityContext EntityContext methods: getEJ[BHome, getE]BLocalHome, lookup
unsetEntityContext JNDI access to java:comp/env

ejbCreate EntityContext methods: getE[BHome, getE]BLocalHome,

getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

ejbPostCreate EntityContext methods: getE[BHome, getE]BLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getE[BLocalObject, getPrimaryKey, getTimerService,
lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbRemove EntityContext methods: getE[BHome, getE]BLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getE]BLocalObject, getPrimaryKey, getTimerService,
lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

Final Jakarta® Enterprise Beans, Optional Features 155

6.1. Overview of Bean-Managed Entity Persistence

Bean method Bean method can perform the following operations

ejbFind EntityContext methods: getE[BHome, getE]BLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejpHome EntityContext methods: getEJ[BHome, getE]BLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejbActivate EntityContext methods: getEJ[BHome, getE]BLocalHome,

ejbPassivate getEJBObject, getE]BLocalObject, getPrimaryKey, getTimerService,
lookup
JNDI access to java:comp/env

ejbLoad EntityContext methods: getEJ[BHome, getE]BLocalHome,

ejbStore getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getE]BLocalObject, getPrimaryKey, getTimerService,
lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

Timer service or Timer methods
EntityManagerFactory access
EntityManager access

business method from EntityContext methods: getE[BHome, getE]BLocalHome,

component interface getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getE[BLocalObject, getPrimaryKey, getTimerService,
lookup

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

Timer service or Timer methods
EntityManagerFactory access
EntityManager access

156 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

Bean method Bean method can perform the following operations

ejbTimeout EntityContext methods: getE[BHome, getE]BLocalHome,
getCallerPrincipal, isCallerInRole, getRollbackOnly, setRollbackOnly,
getEJBObject, getE]BLocalObject, getPrimaryKey, getTimerService,
lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

Additional restrictions:

* The getRollbackOnly and setRollbackOnly methods of the EntityContext interface should be used
only in the enterprise bean methods that execute in the context of a transaction. The container
must throw the java.lang.IllegalStateException if the methods are invoked while the instance is
not associated with a transaction.

Reasons for disallowing operations:
* Invoking the getEJBObject, getEJBLocalObject, and getPrimaryKey methods is disallowed in the entity

bean methods in which there is no entity object identity associated with the instance.

 Invoking the getEJBObject and getEJBHome methods is disallowed if the entity bean does not define a
remote client view.

* Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the entity bean does
not define a local client view.

* Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the entity bean
methods for which the container does not have a meaningful transaction context. These are the
methods that have the NotSupported, Never, or Supports transaction attribute.

* Accessing resource managers and enterprise beans is disallowed in the entity bean methods for
which the container does not have a meaningful transaction context or client security context.

6.1.8. Caching of Entity State and the ejbLoad and ejbStore Methods

An instance of an entity bean with bean-managed persistence can cache the entity object’s state
between business method invocations. An instance may choose to cache the entire entity object’s state,
part of the state, or no state at all.

The container-invoked ejblLoad and ejbStore methods assist the instance with the management of the
cached entity object’s state. The instance should handle the ejbLoad and ejbStore methods as follows:

* When the container invokes the ejbStore method on the instance, the instance should push all
cached updates of the entity object’s state to the underlying database. The container invokes the

Final Jakarta® Enterprise Beans, Optional Features 157

6.1. Overview of Bean-Managed Entity Persistence

ejbStore method at the end of a transaction “”, and may also invoke it at other times when the
instance is in the ready state. (For example the container may invoke ejbStore when passivating an
instance in the middle of a transaction, or when transferring the instance’s state to another
instance to support distributed transactions in a multi-process server.)

* When the container invokes the ejbLoad method on the instance, the instance should discard any
cached entity object’s state. The instance may, but is not required to, refresh the cached state by
reloading it from the underlying database.

The following examples, which are illustrative but not prescriptive, show how an instance may cache
the entity object’s state:

* An instance loads the entire entity object’s state in the ejbLoad method and caches it until the
container invokes the ejbStore method. The business methods read and write the cached entity
state. The ejbStore method writes the updated parts of the entity object’s state to the database.

* An instance loads the most frequently used part of the entity object’s state in the ejblLoad method
and caches it until the container invokes the ejbStore method. Additional parts of the entity object’s
state are loaded as needed by the business methods. The ejbStore method writes the updated parts
of the entity object’s state to the database.

* An instance does not cache any entity object’s state between business methods. The business
methods access and modify the entity object’s state directly in the database. The ejbload and
ejbStore methods have an empty implementation.

We expect that most entity developers will not manually code the cache management and data access
calls in the entity bean class. We expect that they will rely on application development tools to provide
various data access components that encapsulate data access and provide state caching.

6.1.8.1. ejbLoad and ejbStore with the NotSupported Transaction Attribute

The use of the ejblLoad and ejbStore methods for caching an entity object’s state in the instance works
well only if the container can use transaction boundaries to drive the ejblLoad and ejbStore methods.
When the NotSupported “ transaction attribute is assigned to a component interface method, the
corresponding enterprise bean class method executes with an unspecified transaction context (See
Enterprise Beans Core Contracts and Requirements document [2] Subsection “Handling of Methods that
Run with an unspecified transaction context”). This means that the container does not have any well-
defined transaction boundaries to drive the ejbLoad and ejbStore methods on the instance.

Therefore, the ejbLoad and ejbStore methods are “unreliable” for the instances that the container uses
to dispatch the methods with an unspecified transaction context. The following are the only guarantees
that the container provides for the instances that execute the methods with an unspecified transaction
context:

* The container invokes at least one ejbLoad between ejbActivate and the first business method in the
instance.

* The container invokes at least one ejbStore between the last business method on the instance and

158 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

the ejbPassivate method "

Because the entity object’s state accessed between the ejblLoad and ejbStore method pair is not
protected by a transaction boundary for the methods that execute with an unspecified transaction
context, the Bean Provider should not attempt to use the ejblLoad and ejbStore methods to control
caching of the entity object’s state in the instance. Typically, the implementation of the ejbLoad and
ejbStore methods should be a no-op (i.e., an empty method), and each business method should access
the entity object’s state directly in the database.

6.1.9. Finder Method Return Type

6.1.9.1. Single-Object Finder

Some finder methods (such as ejbFindByPrimaryKey) are designed to return at most one entity object.
For single-object finders, the result type of a find<METHOD> method defined in the entity bean’s remote
home interface is the entity bean’s remote interface, and the result type of the find<METHOD> method
defined in the entity bean’s local home interface is the entity bean’s local interface. The result type of
the corresponding ejbFind<METHOD> method defined in the entity’s implementation class is the entity
bean’s primary key type.

The following code illustrates the definition of a single-object finder on the remote home interface.

// Entity’s home interface
public AccountHome extends jakarta.ejb.EJBHome {

Account findByPrimaryKey(AccountPrimaryKey primkey)
throws FinderException, RemoteException;

Note that a finder method defined on the local home interface, however, must not throw the
RemoteException.

Final Jakarta® Enterprise Beans, Optional Features 159

6.1. Overview of Bean-Managed Entity Persistence

// Entity’s implementation class
public AccountBean implements jakarta.ejb.EntityBean {

public AccountPrimaryKey ejbFindByPrimaryKey(
AccountPrimaryKey primkey)
throws FinderException

6.1.9.2. Multi-Object Finders

Some finder methods are designed to return multiple entity objects. For multi-object finders defined in
the entity bean’s remote home interface, the result type of the find<METHOD> method is a collection of
objects implementing the entity bean’s remote interface. For multi-object finders defined in the entity
bean’s local home interface, the result type is a collection of objects implementing the entity bean’s
local interface. In either case, the result type of the corresponding ejbFind<METHOD> implementation
method defined in the entity bean’s implementation class is a collection of objects of the entity bean’s
primary key type.

The Bean Provider can choose two types to define a collection type for a finder:

* the Java™ 2 java.util.Collection interface

* the JDK™ 1.1 java.util.Enumeration interface

A Bean Provider targeting containers and clients based on Java 2 should use the java.util.Collection
interface for the finder’s result type.

A Bean Provider who wants to ensure that the entity bean is compatible with containers and clients
based on JDK 1.1 must use the java.util.Enumeration interface for the finder’s result type “*.

The Bean Provider must ensure that the objects in the java.util.Enumeration or java.util.Collection
returned from the ejbFind<METHOD> method are instances of the entity bean’s primary key class.

A client program must use the PortableRemoteObject.narrow method to convert the objects contained in
the collections returned by a finder method on the entity bean’s remote home interface to the entity
bean’s remote interface type.

The following is an example of a multi-object finder method definition that is compatible with
containers and clients based on Java 2:

160 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

// Entity’s remote home interface
public AccountHome extends jakarta.ejb.EJBHome {

java.util.Collection findlLargeAccounts(double limit)
throws FinderException, RemoteException;

}

// Entity’s implementation class
public AccountBean implements jakarta.ejb.EntityBean {

public java.util.Collection ejbFindLargeAccounts(
double 1imit) throws FinderException

{
}

The following is an example of a multi-object finder method definition compatible with containers and
clients that are based on both J]DK 1.1 and Java 2:

// Entity’s remote home interface
public AccountHome extends jakarta.ejb.EJBHome {

java.util.Enumeration findLargeAccounts(double limit)
throws FinderException, RemoteException;

}

// Entity’s implementation class
public AccountBean implements jakarta.ejb.EntityBean {

public java.util.Enumeration ejbFindLargeAccounts(
double Timit) throws FinderException

{
}

6.1.10. Timer Notifications

An entity bean can be registered with the Enterprise Beans Timer Service for time-based event
notifications if it implements the jakarta.ejb.TimedObject interface. The container invokes the bean

Final Jakarta® Enterprise Beans, Optional Features 161

6.1. Overview of Bean-Managed Entity Persistence
instance’s ejbTimeout method when a timer for the bean has expired. See Timer Service.
6.1.11. Standard Application Exceptions for Entities

The Enterprise Beans specification defines the following standard application exceptions:

* jakarta.ejb.CreateException

jakarta.ejb.DuplicateKeyException
* jakarta.ejb.FinderException
* jakarta.ejb.0bjectNotFoundException

* jakarta.ejb.RemoveException

6.1.11.1. CreateException

From the client’s perspective, a CreateException (or a subclass of CreateException) indicates that an
application level error occurred during the create<METHOD> operation. If a client receives this exception,
the client does not know, in general, whether the entity object was created but not fully initialized, or
not created at all. Also, the client does not know whether or not the transaction has been marked for
rollback. (However, the client may determine the transaction status using the UserTransaction interface
or the setRollbackOnly method of the EJBContext interface.)

The Bean Provider throws the CreateException (or subclass of CreateException) from the
ejbCreate<METHOD> and ejbPostCreate<METHOD> methods to indicate an application-level error from the
create or initialization operation. Optionally, the Bean Provider may mark the transaction for rollback
before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be lost
if the transaction were committed by the client. Typically, when a CreateException is thrown, it leaves the
database in a consistent state, allowing the client to recover. For example, ejbCreate may throw the
CreatekException to indicate that the some of the arguments to the create<METHOD> method are invalid.

The container treats the CreateException as any other application exception. See Container Provider
Responsibilities.

6.1.11.2. DuplicateKeyException

The DuplicateKeyException is a subclass of CreateException. It is thrown by the ejbCreate<METHOD>
method to indicate to the client that the entity object cannot be created because an entity object with
the same key already exists. The unique key causing the violation may be the primary key, or another
key defined in the underlying database.

Normally, the Bean Provider should not mark the transaction for rollback before throwing the
exception.

When the client receives the DuplicateKeyException, the client knows that the entity was not created,

162 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence
and that the client’s transaction has not typically been marked for rollback.

6.1.11.3. FinderException

From the client’s perspective, a FinderException (or a subclass of FinderException) indicates that an
application level error occurred during the find operation. Typically, the client’s transaction has not
been marked for rollback because of the FinderException.

The Bean Provider throws the FinderException (or subclass of FinderException) from the
ejbFind<METHOD> method to indicate an application-level error in the finder method. The Bean Provider
should not, typically, mark the transaction for rollback before throwing the FinderException.

The container treats the FinderException as any other application exception. See Container Provider
Responsibilities.

6.1.11.4. ObjectNotFoundException

The ObjectNotFoundException is a subclass of FinderException. It is thrown by the ejbFind<METHOD>
method to indicate that the requested entity object does not exist.

Only single-object finders (see Finder Method Return Type) should throw this exception. Multi-object
finders must not throw this exception. Multi-object finders should return an empty collection as an
indication that no matching objects were found.

6.1.11.5. RemoveException

From the client’s perspective, a RemoveException (or a subclass of RemoveException) indicates that an
application level error occurred during a remove operation. If a client receives this exception, the
client does not know, in general, whether the entity object was removed or not. The client also does not
know if the transaction has been marked for rollback. (However, the client may determine the
transaction status using the UserTransaction interface.)

The Bean Provider throws the RemoveException (or subclass of RemoveException) from the ejbRemove
method to indicate an application-level error from the entity object removal operation. Optionally, the
Bean Provider may mark the transaction for rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be lost
if the transaction were committed by the client. Typically, when a RemoveException is thrown, it leaves the
database in a consistent state, allowing the client to recover.

The container treats the RemoveException as any other application exception. See Container Provider
Responsibilities.

6.1.12. Commit Options

The Entity Bean protocol is designed to give the container the flexibility to select the disposition of the
instance state at transaction commit time. This flexibility allows the container to optimally manage the

Final Jakarta® Enterprise Beans, Optional Features 163

6.1. Overview of Bean-Managed Entity Persistence

caching of entity object’s state and the association of an entity object identity with the enterprise bean
instances.

The container can select from the following commit-time options:

Option A: The container caches a “ready” instance between transactions. The container ensures that
the instance has exclusive access to the state of the object in the persistent storage. Therefore, the
container does not have to synchronize the instance’s state from the persistent storage at the beginning
of the next transaction.

Option B: The container caches a “ready” instance between transactions. In contrast to Option A, in
this option the container does not ensure that the instance has exclusive access to the state of the
object in the persistent storage. Therefore, the container must synchronize the instance’s state from
the persistent storage at the beginning of the next transaction.

Option C: The container does not cache a “ready” instance between transactions. The container
returns the instance to the pool of available instances after a transaction has completed.

The following table provides a summary of the commit-time options.

Table 8. Summary of Commit-Time Options

Write instance state to Instance stays ready Instance state remains

database valid
Option A Yes Yes Yes
Option B Yes Yes No
Option C Yes No No

Note that the container synchronizes the instance’s state with the persistent storage at transaction
commit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity bean
will work correctly regardless of the commit-time option chosen by the container. The Bean Provider
writes the entity bean in the same way.

6.1.13. Concurrent Access from Multiple Transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about
concurrent access from multiple transactions. The Bean Provider may assume that the container will
ensure appropriate synchronization for entity objects that are accessed concurrently from multiple
transactions.

The container typically uses one of the following implementation strategies to achieve proper
synchronization. (These strategies are illustrative, not prescriptive.)

* The container activates multiple instances of the entity bean, one for each transaction in which the

164 Jakarta® Enterprise Beans, Optional Features Final

6.1. Overview of Bean-Managed Entity Persistence

entity object is being accessed. The transaction synchronization is performed automatically by the
underlying database during the database access calls performed by the business methods and the
ejbTimeout method; and by the ejbload, ejbCreate<METHOD>, ejbStore, and ejbRemove methods. The
database system provides all the necessary transaction synchronization; the container does not
have to perform any synchronization logic.

Container

m enterprise bean instances
\ Account 100> -
1 ~
Entity object
Account 100

inTX 1 ~—
Client 2

Account 100
(Account 100> //
Figure 13. Multiple Clients Can Access the Same Entity Object Using Multiple Instances

inTX 2

With this strategy, the type of lock acquired by ejbload leads to a trade-off. If ejblLoad acquires an
exclusive lock on the instance’s state in the database, then throughput of read-only transactions could be
impacted. If ejbload acquires a shared lock and the instance is updated, then ejbStore will need to
promote the lock to an exclusive lock. This may cause a deadlock if it happens concurrently under
multiple transactions.

* The container acquires exclusive access to the entity object’s state in the database. The container
activates a single instance and serializes the access from multiple transactions to this instance. The
commit-time option A applies to this type of container.

Container

. / enterprise bean instances
Client 1 T 1

<Account 100) - -
inTX 1
(Entity obj ect)/l T

Account 100

X 2 container blocks Client 2
Client 2 \until Client 1 finishes /

Figure 14. Multiple Clients Can Access the Same Entity Object Using Single Instance

Account 100

6.1.14. Non-reentrant and Re-entrant Instances

An entity Bean Provider can specify that an entity bean is non-reentrant. If an instance of a non-

Final Jakarta® Enterprise Beans, Optional Features 165

6.2. Responsibilities of the Enterprise Bean Provider

reentrant entity bean executes a client request in a given transaction context, and another request
with the same transaction context arrives for the same entity object, the container will throw an
exception to the second request. This rule allows the Bean Provider to program the entity bean as
single-threaded, non-reentrant code.

The functionality of some entity beans may require loopbacks in the same transaction context. An
example of a loopback is when the client calls entity object A, A calls entity object B, and B calls back A
in the same transaction context. The entity bean’s method invoked by the loopback shares the current
execution context (which includes the transaction and security contexts) with the bean’s method
invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the container must reject
an attempt to re-enter the instance via the entity bean’s component interface while the instance is
executing a business method. (This can happen, for example, if the instance has invoked another
enterprise bean, and the other enterprise bean tries to make a loopback call.) If the attempt is made to
reenter the instance through the remote interface, the container must throw the
java.rmi.RemoteException to the caller. If the attempt is made to reenter the instance through the local
interface, the container must throw the jakarta.ejb.EJBException to the caller. The container must
allow the call if the bean’s deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with caution. First, the Bean Provider must
code the entity bean with the anticipation of a loopback call. Second, since the container cannot, in
general, tell a loopback from a concurrent call from a different client, the client programmer must be
careful to avoid code that could lead to a concurrent call in the same transaction context.

Concurrent calls in the same transaction context targeted at the same entity object are illegal and may
lead to unpredictable results. Since the container cannot, in general, distinguish between an illegal
concurrent call and a legal loopback, application programmers are encouraged to avoid using
loopbacks. Entity beans that do not need callbacks should be marked as non-reentrant in the
deployment descriptor, allowing the container to detect and prevent illegal concurrent calls from
clients.

6.2. Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of a bean-managed persistence entity Bean Provider to
ensure that the entity bean can be deployed in any Enterprise Beans container.

6.2.1. Classes and Interfaces
The Bean Provider is responsible for providing the following class files:

* Entity bean class and any dependent classes
* Primary key class

* Entity bean’s remote interface and remote home interface, if the entity bean provides a remote
client view

166 Jakarta® Enterprise Beans, Optional Features Final

6.2. Responsibilities of the Enterprise Bean Provider

» Entity bean’s local interface and local home interface, if the entity bean provides a local client view

The Bean Provider must provide a remote interface and a remote home interface or a local interface
an local home interface for the bean. The Bean Provider may provide a remote interface, remote home
interface, local interface, and local home interface for the bean. Other combinations are not allowed.

6.2.2. Enterprise Bean Class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, the jakarta.ejb.EntityBean interface.

The class may implement, directly or indirectly, the jakarta.ejb.TimedObject interface.

The class must be defined as public and must not be abstract. The class must be a top level class.
The class must not be defined as final.

The class must define a public constructor that takes no arguments.

The class must not define the finalize method.

The class may, but is not required to, implement the entity bean’s component interface. “” If the class
implements the entity bean’s component interface, the class must provide no-op implementations of
the methods defined in the jakarta.ejb.EJBObject or jakarta.ejb.EJBLocalObject interface. The
container will never invoke these methods on the bean instances at runtime.

A no-op implementation of these methods is required to avoid defining the entity bean class as abstract.

The entity bean class must implement the business methods, and the ejbCreate<METHOD>,
ejbPost(Create<METHOD>, ejbFind<METHOD>, and ejbHome<METHOD> methods as described later in this section.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has
superclasses, the business methods, the ejbCreate and ejbPostCreate methods, the finder methods, and
the methods of the EntityBean interface or the TimedObject interface may be implemented in the
enterprise bean class or in any of its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods invoked
internally by the business methods) in addition to the methods required by the Enterprise Beans
specification.

6.2.3. ejbCreate<METHOD> Methods

The entity bean class must implement the ejbCreate<METHOD> methods that correspond to the
create<METHOD> methods specified in the entity bean’s home interface.

The entity bean class may define zero or more ejbCreate<METHOD> methods whose signatures must
follow these rules:

Final Jakarta® Enterprise Beans, Optional Features 167

6.2. Responsibilities of the Enterprise Bean Provider

The method name must have ejbCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be the entity bean’s primary key type.

The method argument and return value types must be legal types for RMI-IIOP if the ejbCreate<METHOD>
corresponds to a create<METHOD> on the entity bean’s remote home interface.

The throws clause may define arbitrary application specific exceptions, including the
jakarta.ejb.CreateException.

Compatibility Note: Enterprise Beans 1.0 allowed the ejbCreate method to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1—an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean
should throw the jakarta.ejb.EJBException or another java.lang.RuntimeException to indicate non-
application exceptions to the container (see System Exceptions). An Enterprise Beans 2.0 or later
enterprise bean should not throw the java.rmi.RemoteException from the ejbCreate method.

The entity object created by the ejbCreate<METHOD> method must have a unique primary key. This
means that the primary key must be different from the primary keys of all the existing entity objects
within the same home. The ejbCreate<METHOD> method should throw the DuplicateKeyException on an
attempt to create an entity object with a duplicate primary key. However, it is legal to reuse the
primary key of a previously removed entity object.

6.2.4. ejbPostCreate<METHOD> Methods

For each ejbCreate<METHOD> method, the entity bean class must define a matching
ejbPostCreate<METHOD> method, using the following rules:

The method name must have ejbPostCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be void.

The method arguments must be the same as the arguments of the matching ejbCreate<METHOD> method.

The throws clause may define arbitrary application specific exceptions, including the
jakarta.ejb.CreateException.

Compatibility Note: Enterprise Beans 1.0 allowed the ejbPost(reate method to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1—an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean

168 Jakarta® Enterprise Beans, Optional Features Final

6.2. Responsibilities of the Enterprise Bean Provider

should throw the jakarta.ejb.EJBException or another java.lang.RuntimeException to indicate non-
application exceptions to the container (see System Exceptions). An Enterprise Beans 2.0 or later
enterprise bean should not throw the java.rmi.RemoteException from the ejbPostCreate method.

6.2.5. ejbFind Methods
The entity bean class may also define additional ejbFind<METHOD> finder methods.
The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefix “ejbFind” (e.g. ejbFindByPrimaryKey,
ejbFindLargeAccounts, ejbFindLateShipments).

A finder method must be declared as public.
The method must not be declared as final or static.

The method argument types must be legal types for RMI-IIOP if the ejbFind<METHOD> method
corresponds to a find<METHOD> method on the entity bean’s remote home interface.

The return type of a finder method must be the entity bean’s primary key type, or a collection of
primary keys (see Finder Method Return Type).

The throws clause may define arbitrary application specific exceptions, including the
jakarta.ejb.FinderException.

Compatibility Note: Enterprise Beans 1.0 allowed the finder methods to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1—an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean
should throw the jakartas.ejb.EJBException or another java.lang.RuntimeException to indicate non-
application exceptions to the container (see System Exceptions). An Enterprise Beans 2.0 or later
enterprise bean should not throw the java.rmi.RemoteException from the ejbFind method.

Every entity bean must define the ejbFindByPrimaryKey method. The result type for this method must be
the primary key type (i.e., the ejbFindByPrimaryKey method must be a single-object finder).

6.2.6. ejpHome<METHOD> Methods

The entity bean class may define zero or more home methods whose signatures must follow the
following rules:

An ejbHome<METHOD> method must exist for every home <METHOD> method on the entity bean’s remote
home or local home interface. The method name must have ejpHome as its prefix followed by the
name of the <METHOD> method in which the first character has been uppercased.

The method must be declared as public.

The method must not be declared as static.

Final Jakarta® Enterprise Beans, Optional Features 169

6.2. Responsibilities of the Enterprise Bean Provider

The method argument and return value types must be legal types for RMI-IIOP if the ejbHome method
corresponds to a method on the entity bean’s remote home interface.

The throws clause may define arbitrary application specific exceptions. The throws clause must not
throw the java.rmi.RemoteException.

6.2.7. Business Methods

The entity bean class may define zero or more business methods whose signatures must follow these
rules:

The method names can be arbitrary, but they must not start with “ejb” to avoid conflicts with the
callback methods used by the Enterprise Beans architecture.

The business method must be declared as public.
The method must not be declared as final or static.

The method argument and return value types must be legal types for RMI-IIOP if the method
corresponds to a business method on the entity bean’s remote interface.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: Enterprise Beans 1.0 allowed the business methods to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1—an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean
should throw the jakarta.ejb.EJBException or another java.lang.RuntimeException to indicate non-
application exceptions to the container (see System Exceptions). An Enterprise Beans 2.0 or later
enterprise bean should not throw the java.rmi.RemoteException from a business method.

6.2.8. Entity Bean’s Remote Interface
The following are the requirements for the entity bean’s remote interface:
The interface must extend the jakarta.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that their
argument and return value types must be valid types for RMI-IIOP, and their throws clauses must
include the java.rmi.RemoteException.

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity bean’s
class. The matching method must have:

¢ The same name.

170 Jakarta® Enterprise Beans, Optional Features Final

6.2. Responsibilities of the Enterprise Bean Provider

* The same number and types of its arguments, and the same return type.
» All the exceptions defined in the throws clause of the matching method of the enterprise bean class

must be defined in the throws clause of the method of the remote interface.

The remote interface methods must not expose local interface types, local home interface types, timers
or timer handles, or the managed collection classes that are used for entity beans with container-
managed persistence as arguments or results.

6.2.9. Entity Bean’s Remote Home Interface
The following are the requirements for the entity bean’s remote home interface:
The interface must extend the jakarta.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their
argument and return types must be of valid types for RMI-IIOP, and that their throws clauses must
include the java.rmi.RemoteException.

The remote home interface is allowed to have superinterfaces. Use of interface inheritance is subject to
the RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the remote home interface must be one of the following:

¢ A create method.
e A finder method.

* A home method.

Each create method must be the named “create<METHOD>”, and it must match one of the
ejbCreate<METHOD> methods defined in the enterprise bean class. The matching ejbCreate<METHOD>
method must have the same number and types of its arguments. (Note that the return type is
different.)

The return type for a create<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause of
the matching create<METHOD> method of the remote home interface (i.e., the set of exceptions defined
for the create<METHOD> method must be a superset of the union of exceptions defined for the
ejbCreate<METHOD> and ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the jakarta.ejb.CreateException.

Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts), and it must match one of
the ejbFind<METHOD> methods defined in the entity bean class (e.g. ejbFindLargeAccounts). The matching
ejbFind<METHOD> method must have the same number and types of arguments. (Note that the return
type may be different.)

Final Jakarta® Enterprise Beans, Optional Features 171

6.2. Responsibilities of the Enterprise Bean Provider

The return type for a find<METHOD> method must be the entity bean’s remote interface type (for a single-
object finder), or a collection thereof (for a multi-object finder).

The remote home interface must always include the findByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause of an ejbFind method of the entity bean class must be
included in the throws clause of the matching find method of the remote home interface.

The throws clause of a finder method must include the jakarta.ejb.FinderException.

Home methods can have arbitrary names, provided that they do not clash with create, find, and
remove method names. The matching ejpHome method specified in the entity bean class must have
the same number and types of arguments and must return the same type as the home method as
specified in the remote home interface of the bean.

The remote home interface methods must not expose local interface types, local home interface types,
timer handles, or the managed collection classes that are used for entity beans with container-
managed persistence as arguments or results.

6.2.10. Entity Bean’s Local Interface
The following are the requirements for the entity bean’s local interface:
The interface must extend the jakarta.ejb.EJBLocalObject interface.

The throws clause of a method defined on the local interface must not include the
java.rmi.RemoteException.

The local interface is allowed to have superinterfaces.

For each method defined in the local interface, there must be a matching method in the entity bean’s
class. The matching method must have:

* The same name.
* The same number and types of its arguments, and the same return type.

» All the exceptions defined in the throws clause of the matching method of the enterprise Bean class
must be defined in the throws clause of the method of the local interface.

6.2.11. Entity Bean’s Local Home Interface

The following are the requirements for the entity bean’s local home interface:

The interface must extend the jakarta.ejb.EJBLocalHome interface.

The throws clause of a method on the local home interface must not include the

java.rmi.RemoteException.

172 Jakarta® Enterprise Beans, Optional Features Final

6.2. Responsibilities of the Enterprise Bean Provider

The local home interface is allowed to have superinterfaces.
Each method defined in the local home interface must be one of the following:

e A create method.
e A finder method.

¢ A home method.

Each create method must be the named “create<METHOD>”, and it must match one of the
ejbCreate<METHOD> methods defined in the enterprise bean class. The matching ejbCreate<METHOD>
method must have the same number and types of its arguments. (Note that the return type is
different.)

The return type for a create<METHOD> method must be the entity bean’s local interface type.

All the exceptions defined in the throws clause of the matching ejbCreate<METHOD> and
ejbPostCreate<METHOD> methods of the enterprise bean class must be included in the throws clause of
the matching create<METHOD> method of the local home interface (i.e., the set of exceptions defined for
the create<METHOD> method must be a superset of the union of exceptions defined for the
ejbCreate<METHOD> and ejbPostCreate<METHOD> methods).

The throws clause of a create<METHOD> method must include the jakarta.ejb.CreateException.

Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts), and it must match one of
the ejbFind<METHOD> methods defined in the entity bean class (e.g. ejbFindLargeAccounts). The matching
ejbFind<METHOD> method must have the same number and types of arguments. (Note that the return
type may be different.)

The return type for a find<METHOD> method must be the entity bean’s local interface type (for a single-
object finder), or a collection thereof (for a multi-object finder).

The local home interface must always include the findByPrimaryKey method, which is always a single-
object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause of an ejbFind method of the entity bean class must be
included in the throws clause of the matching find method of the local home interface.

The throws clause of a finder method must include the jakarta.ejb.FinderException.

Home methods can have arbitrary names, provided that they do not clash with create, find, and
remove method names. The matching ejbHome method specified in the entity bean class must have the
same number and types of arguments and must return the same type as the home method as specified
in the local home interface of the bean.

The throws clause of any method on the entity bean’s local home interface must not include the
java.rmi.RemoteException.

Final Jakarta® Enterprise Beans, Optional Features 173

6.3. The Responsibilities of the Container Provider

6.2.12. Entity Bean’s Primary Key Class
The Bean Provider must specify a primary key class in the deployment descriptor.
The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of the hashCode() and equals(0Object other) methods to
simplify the management of the primary keys by client code.

6.3. The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support bean-managed
persistence entity beans. The Container Provider is responsible for providing the deployment tools,
and for managing entity bean instances at runtime.

Because the Enterprise Beans specification does not define the API between deployment tools and the
container, we assume that the deployment tools are provided by the Container Provider. Alternatively, the
deployment tools may be provided by a different vendor who uses the container vendor’s specific APL

6.3.1. Generation of Implementation Classes

The deployment tools provided by the Container Provider are responsible for the generation of
additional classes when the entity bean is deployed. The tools obtain the information that they need for
generation of the additional classes by introspecting the classes and interfaces provided by the entity
Bean Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

A class that implements the entity bean’s remote home interface (i.e., the entity EJBHome class).

A class that implements the entity bean’s remote interface (i.e., the entity EJBObject class).

* A class that implements the entity bean’s local home interface (i.e., the entity EJBLocalHome class).

A class that implements the entity bean’s local interface (i.e., the entity EJBLocalObject class).

The deployment tools may also generate a class that mixes some container-specific code with the entity
bean class. The code may, for example, help the container to manage the entity bean instances at
runtime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business methods
and that is used to customize the business logic for an existing operational environment. For example,
a wrapper for a debit function on the Account bean may check that the debited amount does not exceed
a certain limit, or perform security checking that is specific to the operational environment.

6.3.2. Entity EJBHome Class

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s

174 Jakarta® Enterprise Beans, Optional Features Final

6.3. The Responsibilities of the Container Provider

remote home interface. This class implements the methods of the jakarta.ejb.EJBHome interface, and
the type-specific create, finder, and home methods specific to the entity bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD> method,
followed by the matching ejbPostCreate<METHOD> method, passing the create<METHOD> parameters to
these matching methods.

The implementation of the remove methods defined in the jakarta.ejb.EJBHome interface must activate
an instance (if an instance is not already in the ready state) and invoke the ejbRemove method on the
instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD> method. The
implementation of the find<METHOD> method must create an entity object reference for the primary key
returned from the ejbFind<METHOD> and return the entity object reference (i.e., EJBObject) to the client.
If the ejbFind<METHOD> method returns a collection of primary keys, the implementation of the
find<METHOD> method must create a collection of entity object references for the primary keys and
return the collection to the client.

The implementation of each <METHOD> home method invokes a matching ejbHome<METHOD> method (in
which the first character of <METHOD> is uppercased in the name of the ejbHome<METHOD> method), passing
the <METHOD> parameters to the matching method.

6.3.3. Entity EJBODbject Class

The entity EJBObject class, which is generated by deployment tools, implements the entity bean’s
remote interface. It implements the methods of the jakarta.ejb.EJBObject interface and the business
methods specific to the entity bean.

The implementation of the remove method (defined in the jakarta.ejb.EJBObject interface) must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method
on the instance.

The implementation of each business method must activate an instance (if an instance is not already in
the ready state) and invoke the matching business method on the instance.

6.3.4. Entity EJBLocalHome Class

The entity EJBLocalHome class, which is generated by deployment tools, implements the entity bean’s
local home interface. This class implements the methods of the jakarta.ejb.EJBLocalHome interface, and
the type-specific create, finder, and home methods specific to the entity bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD> method,
followed by the matching ejbPostCreate<METHOD> method, passing the create<METHOD> parameters to
these matching methods.

The implementation of the remove method defined in the jakarta.ejb.EJBLocalHome interface must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method

Final Jakarta® Enterprise Beans, Optional Features 175

6.3. The Responsibilities of the Container Provider

on the instance.

The implementation of each find<METHOD> method invokes a matching ejbFind<METHOD> method. The
implementation of the find<METHOD> method must create an entity object reference for the primary key
returned from the ejbFind<METHOD> and return the entity object reference (i.e., EJBLocalObject) to the
client. If the ejbFind<METHOD> method returns a collection of primary keys, the implementation of the
find<METHOD> method must create a collection of entity object references for the primary keys and
return the collection to the client.

The implementation of each <METHOD> home method invokes a matching ejbHome<METHOD> method (in
which the first character of <METHOD> is uppercased in the name of the ejbHome<METHOD> method), passing
the <METHOD> parameters to the matching method.

6.3.5. Entity EJBLocalObject Class

The entity EJBLocalObject class, which is generated by deployment tools, implements the entity bean’s
local interface. It implements the methods of the jakarta.ejb.EJBLocalObject interface and the business
methods specific to the entity bean.

The implementation of the remove method (defined in the jakarta.ejb.EJBLocalObject interface) must
activate an instance (if an instance is not already in the ready state) and invoke the ejbRemove method
on the instance.

The implementation of each business method must activate an instance (if an instance is not already in
the ready state) and invoke the matching business method on the instance.

6.3.6. Handle Class

The deployment tools are responsible for implementing the handle class for the entity bean. The
handle class must be serializable by the Java Serialization protocol.

As the handle class is not entity-bean specific, the container may, but is not required to, use a single
class for all deployed entity beans.

6.3.7. Home Handle Class

The deployment tools responsible for implementing the home handle class for the entity bean. The
handle class must be serializable by the Java Serialization protocol.

Because the home handle class is not entity-bean specific, the container may, but is not required to, use
a single class for the home handles of all deployed entity beans.

6.3.8. Metadata Class

The deployment tools are responsible for implementing the class that provides metadata information
to the remote client view contract. The class must be a valid RMI-IIOP Value Type, and must implement

176 Jakarta® Enterprise Beans, Optional Features Final

6.3. The Responsibilities of the Container Provider

the jakarta.ejb.EJBMetaData interface.

Because the metadata class is not entity-bean specific, the container may, but is not required to, use a
single class for all deployed enterprise beans.

6.3.9. Instance’s Re-entrance

The container runtime must enforce the rules defined in Non-reentrant and Re-entrant Instances.

6.3.10. Transaction Scoping, Security, Exceptions

The container runtime must follow the rules on transaction scoping and exception handling described
in Support for Transactions and Exception Handling. The container runtime must follow the rules on
security checking described in the Enterprise Beans Core Contracts and Requirements document [2]
Chapter “Security Management”.

6.3.11. Implementation of Object References

The container should implement the distribution protocol between the client and the container such
that the object references of the remote home and remote interfaces used by entity bean clients are
usable for a long period of time. Ideally, a client should be able to use an object reference across a
server crash and restart. An object reference should become invalid only when the entity object has
been removed, or after a reconfiguration of the server environment (for example, when the entity
bean is moved to a different Enterprise Beans server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the client
code needs to have a recovery handler for the system exceptions thrown from the individual method
invocations on the home and remote interface, the client should not be forced to re-obtain the object
references.

6.3.12. EntityContext

The container must implement the EntityContext.getEJBObject method such that the bean instance can
use the Java language cast to convert the returned value to the entity bean’s remote interface type.
Specifically, the bean instance does not have to use the PortableRemoteObject.narrow method for the
type conversion.

[21] An entity Bean has no ejbCreate<METHOD> and ejbPostCreate<METHOD> methods if it does not define any create
methods in its home interface. Such an entity bean does not allow the clients to create new entity objects. The entity
bean restricts the clients to accessing entities that were created through direct database inserts.

[22] The Enterprise Beans specification does not require the distributed flushing of state. The container in which the
ejbFind<METHOD> method executes is not required to propagate the flush to a different container.

[23] The ability to refresh the state of a read-only bean and the intervals at which such refresh occurs are vendor-
specific.

[24] For example, an implementation might choose to ignore such updates or to disallow them.

[25] This call may be omitted if the bean has been specified as read-only.

[26] This applies also to the Never and Supports attribute.

Final Jakarta® Enterprise Beans, Optional Features 177

6.3. The Responsibilities of the Container Provider

[27] This ejbStore call may be omitted if the bean has been specified as read-only.

[28] The finder will be also compatible with Java 2-based containers and clients.
[29] If the entity bean class does implement the component interface, care must be taken to avoid passing of this as a

method argument or result. This potential error can be avoided by choosing not to implement the component interface

in the entity bean class.

178 Jakarta® Enterprise Beans, Optional Features Final

7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence

Chapter 7. Enterprise Beans 1.1 Entity Bean
Component Contract for Container-Managed
Persistence

This chapter specifies the Enterprise Beans 1.1 entity bean component contract for container-managed
persistence.

7.1. Enterprise Beans 1.1 Entity Beans with Container-
Managed Persistence

Enterprise Beans 2.1 Entity Bean Component Contract for Bean-Managed Persistence describes the
component contract for entity beans with bean-managed persistence. The contract for an Enterprise
Beans 1.1 entity bean with container-managed persistence is the same as the contract for an entity
bean with bean-managed persistence as described in Enterprise Beans 2.1 Entity Bean Component
Contract for Bean-Managed Persistence, except for the differences described in this chapter.

An Enterprise Beans 1.1 entity bean with container-managed persistence cannot have a local interface or
local home interface. Use of the local interfaces of other enterprise beans is not supported for an
Enterprise Beans 1.1 entity bean with container-managed persistence.

Use of the Enterprise Beans Timer Service is not supported for an Enterprise Beans 1.1 entity bean with
container-managed persistence. An Enterprise Beans 1.1 entity bean with container-managed persistence
should not implement the jakarta.ejb.TimedObject interface. Use of dependency injection, interceptors,
and any Java language metadata annotations is not supported for Enterprise Beans 1.1 entity beans.

7.1.1. Container-Managed Fields

An Enterprise Beans 1.1 entity bean with container-managed persistence relies on the Container
Provider’s tools to generate methods that perform data access on behalf of the entity bean instances.
The generated methods transfer data between the entity bean instance’s variables and the underlying
resource manager at the times defined by the Enterprise Beans specification. The generated methods
also implement the creation, removal, and lookup of the entity object in the underlying database.

An entity bean with container-manager persistence must not code explicit data access—all data access
must be deferred to the container.

The Enterprise Beans 1.1 entity Bean Provider is responsible for using the cmp-field elements of the
deployment descriptor to declare the instance’s fields that the container must load and store at the
defined times. The fields must be defined in the entity bean class as public, and must not be defined as
transient.

The container is responsible for transferring data between the entity bean’s instance variables and the
underlying data source before or after the execution of the ejbCreate, ejbRemove, ejbLoad, and ejbStore

Final Jakarta® Enterprise Beans, Optional Features 179

7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence

methods, as described in the following subsections. The container is also responsible for the
implementation of the finder methods.

The Enterprise Beans 2.0 or later deployment descriptor for an Enterprise Beans 1.1 entity bean with
container-managed persistence indicates that the entity bean uses container-managed persistence and
that the value of its cmp-version element is 1.x.

The Enterprise Beans 1.1 component contract does not architect support for relationships for entity
beans with container-managed persistence. The Enterprise Beans 2.0 and later specifications do not
support the use of the cmr-field, ejb-relation, or query deployment descriptor elements or their
subelements for Enterprise Beans 1.1 entity beans.

The following requirements ensure that an Enterprise Beans 1.1 entity bean with container-managed
persistence can be deployed in any compliant container.

* The Bean Provider must ensure that the Java types assigned to the container-managed fields are
restricted to the following: Java primitive types, Java serializable types, and references of
enterprise beans’ remote or remote home interfaces.

* The Container Provider may, but is not required to, use Java Serialization to store the container-
managed fields in the database. If the container chooses a different approach, the effect should be
equivalent to that of Java Serialization. The container must also be capable of persisting references
to enterprise beans’ remote and remote home interfaces (for example, by storing their handle or
primary key).

Although the above requirements allow the Bean Provider to specify almost any arbitrary type for the
container-managed fields, we expect that in practice the Bean Provider of Enterprise Beans 1.1 entity
beans with container-managed persistence will use relatively simple Java types, and that most containers
will be able to map these simple Java types to columns in a database schema to externalize the entity
State in the database, rather than use Java serialization.

If the Bean Provider expects that the container-managed fields will be mapped to database fields, he or
she should provide mapping instructions to the Deployer. The mapping between the instance’s container-
managed fields and the schema of the underlying database manager will be then realized by the data
access classes generated by the Container Provider’s tools. Because entity beans are typically coarse-
grained objects, the content of the container-managed fields may be stored in multiple rows, possibly
spread across multiple database tables. These mapping techniques are beyond the scope of the Enterprise
Beans specification, and do not have to be supported by an Enterprise Beans compliant container. (The
container may simply use the Java serialization protocol in all cases).

7.1.2. ejbCreate, ejbPostCreate

With bean-managed persistence, the entity Bean Provider is responsible for writing the code that
inserts a record into the database in the ejbCreate methods. However, with container-managed
persistence, the container performs the database insert after the ejbCreate method completes.

The container must ensure that the values of the container-managed fields are set to the Java language

180 Jakarta® Enterprise Beans, Optional Features Final

7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence

defaults (e.g. 0 for integer, null for pointers) prior to invoking an ejbCreate method on an instance.

The Enterprise Beans 1.1 entity Bean Provider’s responsibility is to initialize the container-managed
fields in the ejbCreate methods from the input arguments such that when an ejbCreate method
returns, the container can extract the container-managed fields from the instance and insert them into
the database.

The ejbCreate methods must be defined to return the primary key class type. The implementation of
the ejbCreate methods should be coded to return a null. The returned value is ignored by the
container.

Note: The above requirement is to allow the creation of an entity bean with bean-managed persistence by
subclassing an Enterprise Beans 1.1 entity bean with container-managed persistence. The Java language
rules for overriding methods in subclasses requires the signatures of the ejbCreate methods in the
subclass and the superclass be the same.

The container is responsible for creating the entity object’s representation in the underlying database,
extracting the primary key fields of the newly created entity object representation in the database, and
for creating an entity EJBODbject reference for the newly created entity object. The container must
establish the primary key before it invokes the ejbPostCreate method. The container may create the
representation of the entity in the database immediately after ejbCreate returns, or it can defer it to a
later time (for example to the time after the matching ejbPostCreate has been called, or to the end of
the transaction).

The container then invokes the matching ejbPostCreate method on the instance. The instance can
discover the primary key by calling the getPrimaryKey method on its entity context object.

The container must invoke ejbCreate, perform the database insert operation, and invoke ejbPostCreate
in the transaction context determined by the transaction attribute of the matching create method, as
described in Enterprise Beans Core Contracts and Requirements document [2] Subsection “Container-
Managed Transaction Demarcation for Business Methods”.

The container throws the DuplicateKeyException if the newly created entity object would have the same
primary key as one of the existing entity objects within the same home.

7.1.3. ejbRemove

The container invokes the ejbRemove method on an entity bean instance with container-managed
persistence in response to a client-invoked remove operation on the entity bean’s remote home or
remote interface.

The entity Bean Provider can use the ejbRemove method to implement any actions that must be done
before the entity object’s representation is removed from the database.

The container synchronizes the instance’s state before it invokes the ejbRemove method. This means
that the state of the instance variables at the beginning of the ejbRemove method is the same as it would
be at the beginning of a business method.

Final Jakarta® Enterprise Beans, Optional Features 181

7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence

After ejbRemove returns, the container removes the entity object’s representation from the database.

The container must perform ejbRemove and the database delete operation in the transaction context
determined by the transaction attribute of the invoked remove method, as described in Enterprise
Beans Core Contracts and Requirements document [2] Subsection “Container-Managed Transaction
Demarcation for Business Methods”.

7.1.4. ejbLoad

When the container needs to synchronize the state of an enterprise bean instance with the entity
object’s state in the database, the container reads the entity object’s state from the database into the
container-managed fields and then it invokes the ejbLoad method on the instance.

The entity Bean Provider can rely on the container’s having loaded the container-managed fields from
the database just before the container invokes the ejbLoad method. The entity bean can use the ejblLoad
method, for instance, to perform some computation on the values of the fields that were read by the
container (for example, uncompressing text fields).

7.1.5. ejbStore

When the container needs to synchronize the state of the entity object in the database with the state of
the enterprise bean instance, the container first calls the ejbStore method on the instance, and then it
extracts the container-managed fields and writes them to the database.

The entity Bean Provider should use the ejbStore method to set up the values of the container-
managed fields just before the container writes them to the database. For example, the ejbStore
method may perform compression of text before the text is stored in the database.

7.1.6. Finder Hethods
The entity Bean Provider does not write the finder (ejbFind<METHOD>) methods.

The finder methods are generated at the entity bean deployment time using the Container Provider’s
tools. The tools can, for example, create a subclass of the entity bean class that implements the
ejbFind<METHOD> methods, or the tools can generate the implementation of the finder methods directly
in the class that implements the entity bean’s remote home interface.

Note that the ejbFind<METHOD> names and parameter signatures of Enterprise Beans 1.1 entity beans do
not provide the container tools with sufficient information for automatically generating the
implementation of the finder methods for methods other than ejbFindByPrimaryKey. Therefore, the
Bean Provider is responsible for providing a description of each finder method. The entity bean
Deployer uses container tools to generate the implementation of the finder methods based in the
description supplied by the Bean Provider. The Enterprise Beans 1.1 component contract for container-
managed persistence does not specify the format of the finder method description.

182 Jakarta® Enterprise Beans, Optional Features Final

7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence

7.1.7. Home Methods

The Enterprise Beans 1.1 entity bean contract does not support ejbHome methods.

7.1.8. Create Methods

The Enterprise Beans 1.1 entity bean contract does not support create<METHOD> methods.

7.1.9. Primary Key Type

The container must be able to manipulate the primary key type. Therefore, the primary key type for an
entity bean with container-managed persistence must follow the rules in this subsection, in addition to
those specified in Entity Bean’s Primary Key Class.

There are two ways to specify a primary key class for an entity bean with container-managed
persistence:

» Primary key that maps to a single field in the entity bean class.

* Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is convenient for
single-field keys. Without the first method, simple types such as String would have to be wrapped in a
user-defined class.

7.1.9.1. Primary Key that Maps to a Single Field in the Entity Bean Class

The Bean Provider uses the primkey-field element of the deployment descriptor to specify the
container-managed field of the entity bean class that contains the primary key. The field’s type must be
the primary key type.

7.1.9.2. Primary Key that Maps to Multiple Fields in the Entity Bean Class

The primary Kkey class must be public, and must have a public constructor with no parameters.
All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-
managed fields. (This allows the container to extract the primary key fields from an instance’s
container-managed fields, and vice versa.)

7.1.9.3. Special Case: Unknown Primary Key Class

In special situations, the entity Bean Provider may choose not to specify the primary key class for an
entity bean with container-managed persistence. This case usually happens when the entity bean does
not have a natural primary key, and the Bean Provider wants to allow the Deployer to select the
primary key fields at deployment time. The entity bean’s primary key type will usually be derived from
the primary key type used by the underlying database system that stores the entity objects. The

Final Jakarta® Enterprise Beans, Optional Features 183

7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence

primary key used by the database system may not be known to the Bean Provider.

When defining the primary key for the enterprise bean, the Deployer may sometimes need to subclass
the entity bean class to add additional container-managed fields (this typically happens for entity
beans that do not have a natural primary key, and the primary keys are system-generated by the
underlying database system that stores the entity objects).

In this special case, the type of the argument of the findByPrimaryKey method must be declared as
java.lang.Object, and the return value of ejbCreate must be declared as java.lang.0Object. The Bean
Provider must specify the primary key class in the deployment descriptor as of the type
java.lang.0Object.

The primary key class is specified at deployment time in the situations when the Bean Provider develops
an entity bean that is intended to be used with multiple back-ends that provide persistence, and when
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application
programming model, because the clients written prior to deployment of the entity bean may not use, in
general, the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, the
methods should not depend on the type of the object returned from EntityContext.getPrimaryKey, because
the return type is determined by the Deployer after the Enterprise Beans class has been written.

184 Jakarta® Enterprise Beans, Optional Features Final

8.1. Overview

Chapter 8. Support for Transactions

8.1. Overview

This chapter defines requirements for transaction support of entity beans in addition to the contracts
specified in the Enterprise Beans Core Contracts and Requirements document [2] “Chapter Support for
Transactions”.

8.2. Bean Provider’s Responsibilities

This section defines the responsibilities of the Bean Provider for transaction demarcation in entity
beans. See the corresponding section in the Enterprise Beans Core Contracts and Requirements
document [2] for the complete description of the Bean Provider responsibilities.

8.2.1. Bean-Managed Versus Container-Managed Transaction Demarcation

An entity bean must always use container-managed transaction demarcation. An entity bean must not
be designated with bean-managed transaction demarcation.

8.2.2. Isolation Levels

The isolation level describes the degree to which the access to a resource manager by a transaction is
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in entity beans:

* The Container Provider should insure that suitable isolation levels are provided to guarantee data
consistency for entity beans. Typically this means that an equivalent of a repeatable read or
serializable isolation level should be available for applications that require a high degree of
isolation.

 For entity beans with container-managed persistence, transaction isolation is managed by the data
access classes that are generated by the Container Provider’s tools. The tools must ensure that the
management of the isolation levels performed by the data access classes will not result in
conflicting isolation level requests for a resource manager within a transaction.

8.2.3. Specification of the Transaction Attributes for a Bean’s Methods

The Bean Provider of an enterprise bean with container-managed transaction demarcation may
specify the transaction attributes for the enterprise bean’s methods.

A transaction attribute is a value associated with a method of an entity bean’s home or component
interface.

The transaction attributes are specified for the methods defined in the bean’s component interface and

Final Jakarta® Enterprise Beans, Optional Features 185

8.3. Container Provider Responsibilities

all the direct and indirect superinterfaces of the component interface, excluding the getEJBHome,
getEJBLocalHome, getHandle, getPrimaryKey, and isIdentical methods; for the methods defined in the
bean’s home interface and all the direct and indirect superinterfaces of the home interface, excluding
the getEJBMetaData and getHomeHandle methods specific to the remote home interface; and for the
timeout callback methods, if any. ©*”

For entity beans that use container-managed persistence, only the Required, RequiresNew, or Mandatory
deployment descriptor transaction attribute values should be used for the methods defined in the
bean’s component interface and all the direct and indirect superinterfaces of the component interface,
excluding the getEJBHome, getEJBLocalHome, getHandle, getPrimaryKey, and isIdentical methods; and for
the methods defined in the bean’s home interface and all the direct and indirect superinterfaces of the
home interface, excluding the getEJBMetaData and getHomeHandle methods specific to the remote home
interface.

The Bean Provider and Application Assembler must exercise caution when using the RequiresNew
transaction attributes with the navigation of container-managed relationships. If higher levels of
isolation are used, navigating a container-managed relationship in a new transaction context may
result in deadlock.

Containers may optionally support the use of the NotSupported, Supports, and Never transaction
attributes for the methods of entity beans with container-managed persistence. However, entity beans
with container-managed persistence that use these transaction attributes will not be portable.

Containers may optionally support the use of the NotSupported, Supports, and Never transaction
attributes for the methods of entity beans with container-managed persistence because the use of
these transaction modes may be needed to make use of container-managed persistence with non-
transactional data stores. In general, however, the Bean Provider and Application Assembler
should avoid use of the NotSupported, Supports, and Never transaction attribute values for the
methods of entity beans with container-managed persistence because it may lead to inconsistent
results or to the inconsistent and/or to the partial updating of persistent state and relationships in
the event of concurrent use.

8.3. Container Provider Responsibilities

This section defines the responsibilities of the Container Provider for transaction demarcation in entity
beans. See the Enterprise Beans Core Contracts and Requirements document [2] for the complete
description of the Container Provider responsibilities.

8.3.1. Container-Managed Transaction Demarcation for Entity Beans

The container is responsible for providing the transaction demarcation for the entity beans with bean-
managed persistence and container-managed persistence.

186 Jakarta® Enterprise Beans, Optional Features Final

8.3. Container Provider Responsibilities

The container must demarcate transactions as specified by the transaction attribute values specified in
the deployment descriptor. See subsections of “Container-Managed Transaction Demarcation for
Business Methods” of the Enterprise Beans Core Contracts and Requirements document [2] for the
available options and detailed description of the responsibilities of the Container Provider.

[30] Note that the deployment descriptor must be used to specify transaction attributes for entity bean methods if the
transaction attribute is not Required (the default value)

Final Jakarta® Enterprise Beans, Optional Features 187

9.1. Application Exceptions

Chapter 9. Exception Handling

This chapter defines requirements for exception handling of entity beans in addition to the contracts
specified in the Enterprise Beans Core Contracts and Requirements document [2] Chapter “Exception
Handling”.

9.1. Application Exceptions

The jakarta.ejb.CreateException, jakarta.ejb.RemoveException, jakarta.ejb.FinderException, and
subclasses thereof are application exceptions used to report errors to the client from the create, remove,
and finder methods of the EJBHome and/or EJBLocalHome interfaces of entity bean components (see
Standard Application Exceptions for Entities and Standard Application Exceptions for Entities). See
rules for the application exceptions defined in the corresponding section of the Enterprise Beans Core
Contracts and Requirements document [2].

9.2. Bean Provider’s Responsibilities

This section defines the responsibilities of the Bean Provider for exception handling of entity beans in
addition to the Bean Provider’s responsibilities specified in the corresponding section in the Enterprise
Beans Core Contracts and Requirements document [2].

9.2.1. Application Exceptions

The Bean Provider is responsible for using the standard Enterprise Beans application exceptions
(jakarta.ejb.CreateException, jakarta.ejb.RemoveException, jakarta.ejb.FinderException, and
subclasses thereof) for entity beans as described in Standard Application Exceptions for Entities and
Standard Application Exceptions for Entities.

9.2.2. System Exceptions

The Bean Provider should handle various system-level exceptions and errors that an entity bean
instance may encounter during the execution of a business method (e.g. ejbLoad).

9.2.3. jakarta.ejb.NoSuchEntityException

The NoSuchEntityException is a subclass of EJBException. It should be thrown by the entity bean class
methods to indicate that the underlying entity has been removed from the database.

A bean-managed persistence entity bean class typically throws this exception from the ejblLoad and
ejbStore methods, and from the methods that implement the business methods defined in the
component interface.

188 Jakarta® Enterprise Beans, Optional Features Final

9.3. Container Provider Responsibilities

9.3. Container Provider Responsibilities

This section defines the responsibilities of the Container Provider for exception handling of entity
beans in addition to the Container Provider’s responsibilities specified in the corresponding section in
the Enterprise Beans Core Contracts and Requirements document [2].

9.3.1. Exceptions from Method Invoked via Entity Bean’s Client View

The following entity bean methods: ejbCreate<METHOD>, ejbPostCreate<METHOD>, ejbRemove,
ejbHome<METHOD>, and ejbFind<METHOD> are considered to be business methods in this context.

Rules for exception handling of these methods are specified in the Table “Handling of Exceptions
Thrown by Methods of Web Service Client View or Enterprise Beans 2.1 Client View of a Bean with
Container-Managed Transaction Demarcation” of the Enterprise Beans Core Contracts and
Requirements document [2].

9.3.2. Exceptions from Other Container-invoked Callbacks

This subsection applies to the ejbActivate, ejblLoad, ejbPassivate, ejbStore, setEntityContext, and
unsetEntityContext container-invoked callbacks methods of the EntityBean interface.

The container must handle all exceptions or errors from these methods as follows:

* Log the exception or error to bring the problem to the attention of the System Administrator.
o If the instance is in a transaction, mark the transaction for rollback.

* Discard the instance (i.e., the container must not invoke any business methods or container
callbacks on the instance).

* If the exception or error happened during the processing of a client invoked method, throw the
jakarta.ejb.EJBException. “" If the Enterprise Beans 2.1 client view or web service client view is
used, throw the java.rmi.RemoteException to the client if the client is a remote client or throw the
jakarta.ejb.EJBException to the client if the client is a local client. If the instance executed in the
client’s transaction, the container should throw the jakarta.ejb.EJBTransactionRolledbackException.
B2 1f the Enterprise Beans 2.1 client view or web service client view is used, the container should
throw the jakarta.transaction.TransactionRolledbackException to a remote client or the
jakarta.ejb.TransactionRolledbackLocalException to a local client, because it provides more
information to the client. (The client knows that it is fruitless to continue the transaction.)

9.3.3. jakarta.ejb.NoSuchEntityException

The NoSuchEntityException is a subclass of EJBException. If it is thrown by a method of an entity bean
class, the container must handle the exception using the rules in Exceptions from Method Invoked via
Entity Bean’s Client View and Exceptions from Other Container-invoked Callbacks.

To give the client a better indication of the cause of the error, the container should throw the

Final Jakarta® Enterprise Beans, Optional Features 189

9.4. Client’s View of Exceptions

java.rmi.NoSuchObjectException (which is a subclass of java.rmi.RemoteException) to a remote client, or
the jakarta.ejb.NoSuchObjectlLocalException to a local client.

9.3.4. Non-existing Entity Object

If a client makes a call to an entity object that has been removed, the container should throw the
jakarta.ejb.NoSuchEJBException. “ If the Enterprise Beans 2.1 client view is used, the container should
throw the java.rmi.NoSuchObjectException (which is a subclass of java.rmi.RemoteException) to a remote
client, or the jakarta.ejb.NoSuchObjectLocalException to a local client.

9.3.5. Support for Deprecated Use of java.rmi.RemoteException

The Enterprise Beans 1.0 specification allowed the business methods, ejbCreate, ejbPostCreate,
ejbFind<METHOD>, ejbRemove, and the container-invoked callbacks (i.e., the methods defined in the
EntityBean interface) implemented in the enterprise bean class to use the java.rmi.RemoteException to
report non-application exceptions to the container.

See the corresponding section in the Enterprise Beans Core Contracts and Requirements document [2]
for the rules on support of the deprecated use of java.rmi.RemoteException.

9.4. Client’s View of Exceptions

See the corresponding section in the Enterprise Beans Core Contracts and Requirements document [2]
for the client’s view of exceptions received from from enterprise beans and web service endpoints.

[31] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
thrown to the client instead.

[32] If the business interface is a remote business interface that extends java.rmi.Remote, the
jakarta.transaction.TransactionRolledbackException is thrown to the client instead.

[33] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.NoSuchObjectException is thrown to the client instead.

190 Jakarta® Enterprise Beans, Optional Features Final

10.1. Bean Provider’s View of the Timer Service

Chapter 10. Timer Service

This chapter defines limitations of the Enterprise Beans container-managed timer service when used
with Enterprise Beans 2.1 entity beans.

10.1. Bean Provider’s View of the Timer Service

Timers can be created for Enterprise Beans 2.1 entity beans. A timer that is created for the Enterprise
Beans 2.1 entity bean is associated with the entity bean’s identity.

Use of the Enterprise Beans Timer Service is not supported for an Enterprise Beans 1.1 entity bean
with container-managed persistence.

10.1.1. Calendar-Based Time Expressions

Calendar based timers are not supported for entity beans.

10.1.2. Non-persistent Timers

Non-persistent timers are not supported for entity beans.

10.1.3. The TimerService Interface

For an Enterprise Beans 2.1 entity bean, the result of getTimers is a collection of those timers that are
associated with the bean’s identity.

10.1.4. Timer Expiration and Timeout Callback Method

If a timer for an Enterprise Beans 2.1 entity bean expires, and the bean has been passivated, the
container must call the ejbActivate and ejbLoad methods on the entity bean class before calling the
timeout callback method, as described in Container’s View and Container’s View.

10.1.5. Entity Bean Removal

If an entity bean is removed, the container must remove the timers for that bean.

Final Jakarta® Enterprise Beans, Optional Features 191

11.1. Bean Provider’s Responsibilities

Chapter 11. Deployment Descriptor

This chapter defines the Enterprise Beans deployment descriptor elements and the Bean Provider and
the Application Assembler responsibilities corresponding to entity beans. The rules defined in this
chapter are in addition to the rules defined in the Chapter “Deployment Descriptor” of the Enterprise
Beans Core Contracts and Requirements document [2].

See Enterprise Beans Core Contracts and Requirements document [2] for the complete XML Schema for
the Enterprise Beans deployment descriptor.

11.1. Bean Provider’s Responsibilities

The Bean Provider is responsible for providing the following structural information for each entity
bean in the deployment descriptor.

* Re-entrancy indication. The Bean Provider must specify whether an entity bean is re-entrant.

* Entity bean’s persistence management. If the enterprise bean is an entity bean, the Bean
Provider must use the persistence-type element to declare whether persistence management is
performed by the enterprise bean or by the container.

* Entity bean’s primary key class. If the enterprise bean is an entity bean, the Bean Provider
specifies the fully-qualified name of the entity bean’s primary key class in the prim-key-class
element. The Bean Provider must specify the primary key class for an entity with bean-managed
persistence.

* Entity bean’s abstract schema name. If the enterprise bean is an entity bean with container-
managed persistence and cmp-version 2.x, the Bean Provider must specify the abstract schema
name of the entity bean using the abstract-schema-name element.

* Container-managed fields. If the enterprise bean is an entity bean with container-managed
persistence, the Bean Provider must specify the container-managed fields using the cmp-field
elements.

* Container-managed relationships. If the enterprise bean is an entity bean with container-
managed persistence and cmp-version 2.x, the Bean Provider must specify the container-managed
relationships of the entity bean using the relationships element.

* Finder and select queries. If the enterprise bean is an entity bean with container-managed
persistence and cmp-version 2.x, the Bean Provider must use the query element to specify any
Enterprise Beans QL finder or select query for the entity bean other than a query for the
findByPrimaryKey method.

11.2. Application Assembler’s Responsibility

The Application Assembler may modify the following information that was specified by the Bean
Provider:

192 Jakarta® Enterprise Beans, Optional Features Final

11.2. Application Assembler’s Responsibility

* Relationship names for Enterprise Beans 2.x entity beans. If multiple ejb-jar files use the same
names for relationships and are merged into a single ejb-jar file, it is the responsibility of the
Application Assembler to modify the relationship names defined in the ejb-relation-name elements.

In general, the Application Assembler should never modify any of the following.

* Enterprise bean’s abstract schema name. The Application Assembler should not change the
enterprise bean’s name defined in the abstract-schema-name element since Enterprise Beans QL
queries may depend on the content of this element.

* Relationship role source element. The Application Assembler should not change the value of an

ejb-name element in the relationship-role-source element.

If any of these elements must be modified by the Application Assembler in order to resolve name
clashes during the merging of ejb-jar files, the Application Assembler must also modify all ejb-ql query
strings that depend on the value of the modified element(s).

Final Jakarta® Enterprise Beans, Optional Features 193

12.1. Restrictions

Chapter 12. Packaging Restrictions

12.1. Restrictions

* Entity Beans are not supported within .war files. These component types must only be packaged in
a stand-alone ejb-jar file or an ejb-jar file packaged within an .ear file.

* Entity Beans are not supported with the Enterprise Beans 3.2 Lite API (see Enterprise Beans Core
Contracts and Requirements document [2], Subsection “Enterprise Beans 3.2 Lite”).

194 Jakarta® Enterprise Beans, Optional Features Final

Related Documents

Related Documents

= [1] Enterprise JavaBeans™, version 3.1. https://jcp.org/en/jsr/detail?id=318.

= [2] Jakarta Enterprise Beans, Core Features 4.0 https://jakarta.ee/specifications/enterprise-beans/
4.0/.

= [3] Java Remote Method Invocation (RMI). https://docs.oracle.com/javase/8/docs/technotes/guides/
rmi/.

= [4] The Java Virtual Machine Specification. https://docs.oracle.com/javase/specs/jvms/se8/html/
index.html.

= [5] Jakarta Persistence 3.0. https://jakarta.ee/specifications/persistence/3.0/.
= [6] JDBC™ 4.3 API (JDBC specification). https://jcp.org/en/jsr/detail?id=221.
= [7] Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.

Final Jakarta® Enterprise Beans, Optional Features 195

https://jcp.org/en/jsr/detail?id=318
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://jakarta.ee/specifications/persistence/3.0/
https://jcp.org/en/jsr/detail?id=221

13.1. Early Draft

Chapter 13. Revision History

This appendix lists the significant changes that have been made to this document during the
development of this Specification.

13.1. Early Draft

Created document from the EJB 3.2 Draft.

13.2. Early Draft 2

Updated the expert group list.

13.3. Public Draft

Removed Interceptors specification from the list of the E]JB 3.2 set of documents
Minor editorial changes
Updated related documents to their latest versions where applicable

Replaced section number with the section title when referencing EJB Core Contracts and Requirements
document.

Removed text from See Support for Transactions that is exactly the same as in the EJB Core Contracts
and Requirements document. Added references to the corresponding sections with the complete rules.

Removed text from See Exception Handling that is exactly the same as in the EJB Core Contracts and
Requirements document. Added references to the corresponding sections with the complete rules.

Removed most of the text from See Support for Distributed Interoperability as it was an unnecessary
duplication of the corresponding chapter in the EJB Core Contracts and Requirements document. Left
only section “Mapping Objects Returned by Entity Bean Finder Methods to IDL”

Removed chapters “Enterprise Bean Environment” and “Security Management” as it was an
unnecessary duplication of the corresponding chapters in the EJB Core Contracts and Requirements
document.

13.4. Proposed Final Draft

Minor editorial changes
Updated to the final versions of the related documents

Changed the rule for optional feature support for CMP/BMP beans and EJBQL to be that if any of the

196 Jakarta® Enterprise Beans, Optional Features Final

Ejb.html#a3185
Ejb.html#a3210
Ejb.html#a3253

13.5. Final Release Candidate

features is supported, all these features must be supported

13.5. Final Release Candidate

Editorial changes

Rearranged sections in the See Support for JAX-RPC Web Service Endpoints

13.6. Final Release

Minor editorial changes

Final Jakarta® Enterprise Beans, Optional Features 197

Ejb.html#a3139

	Jakarta® Enterprise Beans, Optional Features
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Introduction
	1.1. Acknowledgements
	1.2. Organization of the Specification Documents
	1.3. Document Conventions

	Chapter 2. Overview
	Chapter 3. Client View of an Entity Bean
	3.1. Overview
	3.2. Remote Clients
	3.3. Local Clients
	3.4. Choosing Between a Local or Remote Client View
	3.5. Enterprise Beans Container
	3.5.1. Locating an Entity Bean’s Home Interface
	3.5.2. What a Container Provides

	3.6. Entity Bean’s Remote Home Interface
	3.6.1. Create Methods
	3.6.2. Finder Methods
	3.6.3. Remove Methods
	3.6.4. Home Methods

	3.7. Entity Bean’s Local Home Interface
	3.7.1. Create Methods
	3.7.2. Finder Methods
	3.7.3. Remove Methods
	3.7.4. Home Methods

	3.8. Entity Object’s Life Cycle
	3.8.1. References to Entity Object Remote Interfaces
	3.8.2. References to Entity Object Local Interfaces
	3.8.3. References to Entity Object and Stateful Session Bean Instance Passivation and Conversational State

	3.9. Primary Key and Object Identity
	3.10. Entity Bean’s Remote Interface
	3.11. Entity Bean’s Local Interface
	3.12. Entity Bean’s Handle
	3.13. Entity Home Handles
	3.14. Type Narrowing of Object References

	Chapter 4. Enterprise Beans 2.1 Entity Bean Component Contract for Container-Managed Persistence
	4.1. Overview
	4.2. Container-Managed Entity Persistence and Data Independence
	4.3. The Entity Bean Provider’s View of Container-Managed Persistence
	4.3.1. The Entity Bean Provider’s Programming Contract
	4.3.2. The Entity Bean Provider’s View of Persistent Relationships
	4.3.3. Dependent Value Classes
	4.3.4. Remove Protocols
	4.3.4.1. Remove Methods
	4.3.4.2. Cascade-delete

	4.3.5. Identity of Entity Objects
	4.3.6. Semantics of Assignment for Relationships
	4.3.6.1. Use of the java.util.Collection API to Update Relationships
	4.3.6.2. Use of Set Accessor Methods to Update Relationships

	4.3.7. Assignment Rules for Relationships
	4.3.7.1. One-to-one Bidirectional Relationships
	4.3.7.2. One-to-one Unidirectional Relationships
	4.3.7.3. One-to-many Bidirectional Relationships
	4.3.7.4. One-to-many Unidirectional Relationships
	4.3.7.5. Many-to-one Unidirectional Relationships
	4.3.7.6. Many-to-many Bidirectional Relationships
	4.3.7.7. Many-to-many Unidirectional Relationships

	4.3.8. Collections Managed by the Container
	4.3.9. Non-persistent State
	4.3.10. The Relationship Between the Internal View and the Client View
	4.3.10.1. Restrictions on Remote Interfaces

	4.3.11. Mapping Data to a Persistent Store
	4.3.12. Example
	4.3.13. The Bean Provider’s View of the Deployment Descriptor

	4.4. The Entity Bean Component Contract
	4.4.1. Runtime Execution Model of Entity Beans
	4.4.2. Container Responsibilities
	4.4.2.1. Container-Managed Fields
	4.4.2.2. Container-Managed Relationships

	4.5. Instance Life Cycle Contract Between the Bean and the Container
	4.5.1. Instance Life Cycle
	4.5.2. Bean Provider’s Entity Bean Instance’s View
	4.5.3. Container’s View
	4.5.4. Read-only Entity Beans
	4.5.5. The EntityContext Interface
	4.5.6. Operations Allowed in the Methods of the Entity Bean Class
	4.5.7. Finder Methods
	4.5.7.1. Single-Object Finder Methods
	4.5.7.2. Multi-Object Finder Methods

	4.5.8. Select Methods
	4.5.8.1. Single-Object Select Methods
	4.5.8.2. Multi-Object Select Methods

	4.5.9. Timer Notifications
	4.5.10. Standard Application Exceptions for Entities
	4.5.10.1. CreateException
	4.5.10.2. DuplicateKeyException
	4.5.10.3. FinderException
	4.5.10.4. ObjectNotFoundException
	4.5.10.5. RemoveException

	4.5.11. Commit Options
	4.5.12. Concurrent Access from Multiple Transactions
	4.5.13. Non-reentrant and Re-entrant Instances

	4.6. Responsibilities of the Enterprise Bean Provider
	4.6.1. Classes and Interfaces
	4.6.2. Enterprise Bean Class
	4.6.3. Dependent Value Classes
	4.6.4. ejbCreate<METHOD> Methods
	4.6.5. ejbPostCreate<METHOD> Methods
	4.6.6. ejbHome<METHOD> Methods
	4.6.7. ejbSelect<METHOD> Methods
	4.6.8. Business Methods
	4.6.9. Entity Bean’s Remote Interface
	4.6.10. Entity Bean’s Remote Home Interface
	4.6.11. Entity Bean’s Local Interface
	4.6.12. Entity Bean’s Local Home Interface
	4.6.13. Entity Bean’s Primary Key Class
	4.6.14. Entity Bean’s Deployment Descriptor

	4.7. The Responsibilities of the Container Provider
	4.7.1. Generation of Implementation Classes
	4.7.2. Enterprise Bean Class
	4.7.3. ejbFind<METHOD> Methods
	4.7.4. ejbSelect<METHOD> Methods
	4.7.5. Entity EJBHome Class
	4.7.6. Entity EJBObject Class
	4.7.7. Entity EJBLocalHome Class
	4.7.8. Entity EJBLocalObject Class
	4.7.9. Handle Class
	4.7.10. Home Handle Class
	4.7.11. Metadata Class
	4.7.12. Instance’s Re-entrance
	4.7.13. Transaction Scoping, Security, Exceptions
	4.7.14. Implementation of Object References
	4.7.15. EntityContext

	4.8. Primary Keys
	4.8.1. Primary Key That Maps to a Single Field in the Entity Bean Class
	4.8.2. Primary Key That Maps to Multiple Fields in the Entity Bean Class
	4.8.3. Special Case: Unknown Primary Key Class

	Chapter 5. Enterprise Beans QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods
	5.1. Overview
	5.2. Enterprise Beans QL Definition
	5.2.1. Abstract Schema Types and Query Domains
	5.2.2. Query Methods
	5.2.3. Naming
	5.2.4. Examples
	5.2.5. The FROM Clause and Navigational Declarations
	5.2.5.1. Identifiers
	5.2.5.2. Identification Variables
	5.2.5.3. Range Variable Declarations
	5.2.5.4. Collection Member Declarations
	5.2.5.5. Example
	5.2.5.6. Path Expressions

	5.2.6. WHERE Clause and Conditional Expressions
	5.2.6.1. Literals
	5.2.6.2. Identification Variables
	5.2.6.3. Path Expressions
	5.2.6.4. Input Parameters
	5.2.6.5. Conditional Expression Composition
	5.2.6.6. Operators and Operator Precedence
	5.2.6.7. Between Expressions
	5.2.6.8. In Expressions
	5.2.6.9. Like Expressions
	5.2.6.10. Null Comparison Expressions
	5.2.6.11. Empty Collection Comparison Expressions
	5.2.6.12. Collection Member Expressions
	5.2.6.13. Functional Expressions

	5.2.7. SELECT Clause
	5.2.7.1. Null Values in the Query Result
	5.2.7.2. Aggregate Functions in the SELECT Clause
	5.2.7.3. Examples

	5.2.8. ORDER BY Clause
	5.2.9. Return Value Types
	5.2.10. Null Values
	5.2.11. Equality and Comparison Semantics
	5.2.12. Restrictions

	5.3. Examples
	5.3.1. Simple Queries
	5.3.2. Queries with Relationships
	5.3.3. Queries Using Input Parameters
	5.3.4. Queries for Select Methods
	5.3.5. Enterprise Beans QL and SQL

	5.4. Enterprise Beans QL BNF

	Chapter 6. Enterprise Beans 2.1 Entity Bean Component Contract for Bean-Managed Persistence
	6.1. Overview of Bean-Managed Entity Persistence
	6.1.1. Entity Bean Provider’s View of Persistence
	6.1.2. Runtime Execution Model
	6.1.3. Instance Life Cycle
	6.1.4. The Entity Bean Component Contract
	6.1.4.1. Entity Bean Instance’s View
	6.1.4.2. Container’s View

	6.1.5. Read-only Entity Beans
	6.1.6. The EntityContext Interface
	6.1.7. Operations Allowed in the Methods of the Entity Bean Class
	6.1.8. Caching of Entity State and the ejbLoad and ejbStore Methods
	6.1.8.1. ejbLoad and ejbStore with the NotSupported Transaction Attribute

	6.1.9. Finder Method Return Type
	6.1.9.1. Single-Object Finder
	6.1.9.2. Multi-Object Finders

	6.1.10. Timer Notifications
	6.1.11. Standard Application Exceptions for Entities
	6.1.11.1. CreateException
	6.1.11.2. DuplicateKeyException
	6.1.11.3. FinderException
	6.1.11.4. ObjectNotFoundException
	6.1.11.5. RemoveException

	6.1.12. Commit Options
	6.1.13. Concurrent Access from Multiple Transactions
	6.1.14. Non-reentrant and Re-entrant Instances

	6.2. Responsibilities of the Enterprise Bean Provider
	6.2.1. Classes and Interfaces
	6.2.2. Enterprise Bean Class
	6.2.3. ejbCreate<METHOD> Methods
	6.2.4. ejbPostCreate<METHOD> Methods
	6.2.5. ejbFind Methods
	6.2.6. ejbHome<METHOD> Methods
	6.2.7. Business Methods
	6.2.8. Entity Bean’s Remote Interface
	6.2.9. Entity Bean’s Remote Home Interface
	6.2.10. Entity Bean’s Local Interface
	6.2.11. Entity Bean’s Local Home Interface
	6.2.12. Entity Bean’s Primary Key Class

	6.3. The Responsibilities of the Container Provider
	6.3.1. Generation of Implementation Classes
	6.3.2. Entity EJBHome Class
	6.3.3. Entity EJBObject Class
	6.3.4. Entity EJBLocalHome Class
	6.3.5. Entity EJBLocalObject Class
	6.3.6. Handle Class
	6.3.7. Home Handle Class
	6.3.8. Metadata Class
	6.3.9. Instance’s Re-entrance
	6.3.10. Transaction Scoping, Security, Exceptions
	6.3.11. Implementation of Object References
	6.3.12. EntityContext

	Chapter 7. Enterprise Beans 1.1 Entity Bean Component Contract for Container-Managed Persistence
	7.1. Enterprise Beans 1.1 Entity Beans with Container-Managed Persistence
	7.1.1. Container-Managed Fields
	7.1.2. ejbCreate, ejbPostCreate
	7.1.3. ejbRemove
	7.1.4. ejbLoad
	7.1.5. ejbStore
	7.1.6. Finder Hethods
	7.1.7. Home Methods
	7.1.8. Create Methods
	7.1.9. Primary Key Type
	7.1.9.1. Primary Key that Maps to a Single Field in the Entity Bean Class
	7.1.9.2. Primary Key that Maps to Multiple Fields in the Entity Bean Class
	7.1.9.3. Special Case: Unknown Primary Key Class

	Chapter 8. Support for Transactions
	8.1. Overview
	8.2. Bean Provider’s Responsibilities
	8.2.1. Bean-Managed Versus Container-Managed Transaction Demarcation
	8.2.2. Isolation Levels
	8.2.3. Specification of the Transaction Attributes for a Bean’s Methods

	8.3. Container Provider Responsibilities
	8.3.1. Container-Managed Transaction Demarcation for Entity Beans

	Chapter 9. Exception Handling
	9.1. Application Exceptions
	9.2. Bean Provider’s Responsibilities
	9.2.1. Application Exceptions
	9.2.2. System Exceptions
	9.2.3. jakarta.ejb.NoSuchEntityException

	9.3. Container Provider Responsibilities
	9.3.1. Exceptions from Method Invoked via Entity Bean’s Client View
	9.3.2. Exceptions from Other Container-invoked Callbacks
	9.3.3. jakarta.ejb.NoSuchEntityException
	9.3.4. Non-existing Entity Object
	9.3.5. Support for Deprecated Use of java.rmi.RemoteException

	9.4. Client’s View of Exceptions

	Chapter 10. Timer Service
	10.1. Bean Provider’s View of the Timer Service
	10.1.1. Calendar-Based Time Expressions
	10.1.2. Non-persistent Timers
	10.1.3. The TimerService Interface
	10.1.4. Timer Expiration and Timeout Callback Method
	10.1.5. Entity Bean Removal

	Chapter 11. Deployment Descriptor
	11.1. Bean Provider’s Responsibilities
	11.2. Application Assembler’s Responsibility

	Chapter 12. Packaging Restrictions
	12.1. Restrictions

	Related Documents
	Chapter 13. Revision History
	13.1. Early Draft
	13.2. Early Draft 2
	13.3. Public Draft
	13.4. Proposed Final Draft
	13.5. Final Release Candidate
	13.6. Final Release

