
Jakarta® Enterprise Beans, Core Features
Jakarta Enterprise Beans Team, https://projects.eclipse.org/projects/ee4j.ejb

4.0, November 05, 2020: Final

Table of Contents
Copyright. 2

Eclipse Foundation Specification License. 2

Disclaimers . 2

1. Introduction . 4

1.1. Target Audience. 4

1.2. What is New in This Release. 4

1.3. What was New in Jakarta Enterprise Beans 3.2 . 4

1.4. What was New in Enterprise JavaBeans 3.2. 5

1.5. What was New in Enterprise JavaBeans 3.1. 6

1.5.1. What was New in Enterprise JavaBeans 3.0 . 6

1.6. Acknowledgements. 7

1.7. Acknowledgements for Enterprise JavaBeans 3.2. 7

1.8. Organization of the Specification Documents . 7

1.9. Document Conventions . 8

2. Overview. 9

2.1. Overall Goals . 9

2.2. Enterprise Beans Roles . 9

2.2.1. Enterprise Bean Provider . 10

2.2.2. Application Assembler. 10

2.2.3. Deployer . 11

2.2.4. Enterprise Beans Server Provider. 12

2.2.5. Enterprise Beans Container Provider . 12

2.2.6. System Administrator . 13

2.3. Enterprise Beans . 13

2.3.1. Characteristics of Enterprise Beans . 13

2.3.2. Flexible Model . 13

2.4. Enterprise Bean Object Types . 14

2.4.1. Session Objects. 14

2.4.2. Message-Driven Objects. 15

2.4.3. Entity Objects (Optional) . 15

2.5. Mapping to Web Service Protocols . 15

2.6. Pruning the Enterprise Beans API . 15

2.7. Relationship to Jakarta Managed Beans . 16

2.8. Relationship to Jakarta Contexts and Dependency Injection . 16

2.9. Relationship to Jakarta RESTful Web Services. 17

3. Client View of a Session Bean . 18

3.1. Overview. 18

3.2. Local, Remote, and Web Service Client Views . 19

3.2.1. Remote Clients . 20

3.2.2. Local Clients . 20

3.2.3. Choosing Between a Local or Remote Client View . 21

3.2.4. Web Service Clients . 22

3.3. Enterprise Beans Container . 23

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API 23

3.4.1. Obtaining a Session Bean’s Business Interface . 23

3.4.2. Obtaining a Reference to the No-interface View . 24

3.4.3. Session Bean’s Business Interface. 25

3.4.4. Session Bean’s No-Interface View . 25

3.4.5. Client View of Session Object’s Life Cycle . 26

3.4.6. Example of Obtaining and Using a Session Object . 26

3.4.7. Session Object Identity. 27

3.4.7.1. Stateful Session Beans . 27

3.4.7.2. Stateless Session Beans . 28

3.4.7.3. Singleton Session Beans . 29

3.4.8. Asynchronous Invocations . 29

3.4.8.1. Return Values . 30

3.4.9. Concurrent Access to Session Bean References . 31

3.5. The Web Service Client View of a Stateless or Singleton Session Bean . 31

3.5.1. Jakarta XML Web Services Clients . 32

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client

View API . 33

3.6.1. Locating a Session Bean’s Home Interface . 33

3.6.2. Session Bean’s Remote Home Interface. 34

3.6.2.1. Creating a Session Object. 35

3.6.2.2. Removing a Session Object . 35

3.6.3. Session Bean’s Local Home Interface. 35

3.6.3.1. Creating a Session Object. 36

3.6.3.2. Removing a Session Object . 36

3.6.4. EJBObject and EJBLocalObject . 37

3.6.5. Client view of Session Object’s Life Cycle . 37

3.6.5.1. References to Session Object Remote Component Interfaces . 38

3.6.5.2. References to Session Object Local Component Interfaces . 39

3.6.6. Creating and Using a Session Object. 39

3.6.7. Object Identity . 40

3.6.7.1. Stateful Session Beans . 41

3.6.7.2. Stateless Session Beans . 41

3.6.7.3. getPrimaryKey(). 42

3.6.8. Type Narrowing. 42

4. Session Bean Component Contract. 43

4.1. Overview. 43

4.2. Conversational State of a Stateful Session Bean . 44

4.2.1. Instance Passivation and Conversational State . 44

4.2.2. The Effect of Transaction Rollback on Conversational State . 47

4.3. Protocol Between a Session Bean Instance and its Container . 47

4.3.1. Required Session Bean Metadata . 47

4.3.2. Dependency Injection . 47

4.3.3. The SessionContext Interface . 48

4.3.3.1. Use of the MessageContext Interface by Session Beans . 49

4.3.4. Session Bean Lifecycle Callback Interceptor Methods . 49

4.3.5. The SessionBean Interface . 50

4.3.6. The Session Synchronization Notifications for Stateful Session Beans . 51

4.3.7. Timeout Callbacks for Stateless and Singleton Session Beans . 52

4.3.8. Business Method Delegation. 53

4.3.9. Session Bean Creation . 53

4.3.9.1. Stateful Session Beans . 53

4.3.9.2. Stateless Session Beans . 54

4.3.10. Stateful Session Bean Removal . 54

4.3.11. Stateful Session Bean Timeout. 54

4.3.12. Business Method Interceptor Methods for Session Beans . 55

4.3.13. Serializing Session Bean Methods. 55

4.3.13.1. Stateful Session Bean Concurrent Access Timeouts . 56

4.3.14. Transaction Context of Session Bean Methods . 56

4.4. Access in the Global JNDI Namespace . 57

4.4.1. Syntax. 57

4.4.1.1. java:app . 58

4.4.1.2. java:module . 58

4.4.2. Examples . 58

4.4.2.1. Session bean exposing a single local business interface . 58

4.4.2.2. Session bean exposing multiple client views . 60

4.5. Asynchronous Methods. 60

4.5.1. Metadata . 61

4.5.2. Method Requirements . 61

4.5.2.1. Return Values . 61

4.5.2.2. Method cancellation . 62

4.5.3. Transactions . 62

4.5.4. Security . 62

4.5.5. Client Exception Behavior. 62

4.6. Stateful Session Beans . 62

4.6.1. Stateful Session Bean Lifecycle State Diagram. 62

4.6.2. Operations Allowed in the Methods of a Stateful Session Bean Class . 65

4.6.3. Dealing with Exceptions . 70

4.6.4. Missed PreDestroy Calls . 70

4.6.5. Disabling Passivation of Stateful Session Beans . 70

4.6.6. Transaction Semantics of Initialization, Destruction, Activation and Passivation 71

4.6.7. Restrictions for Transactions . 71

4.7. Stateless Session Beans . 72

4.7.1. Stateless Session Bean Lifecycle State Diagram. 73

4.7.2. Operations Allowed in the Methods of a Stateless Session Bean Class. 73

4.7.3. Dealing with Exceptions . 77

4.8. Singleton Session Beans . 77

4.8.1. Singleton Session Bean Initialization . 78

4.8.2. Singleton Session Bean Destruction . 80

4.8.3. Transaction Semantics of Initialization and Destruction . 80

4.8.4. Singleton Session Bean Error Handling. 81

4.8.5. Singleton Session Bean Concurrency . 81

4.8.5.1. Container-Managed Concurrency . 82

4.8.5.2. Bean-Managed Concurrency. 83

4.8.5.3. Specification of a Concurrency Management Type. 83

4.8.5.4. Specification of the Container-Managed Concurrency Metadata for a Bean’s Methods . 84

4.8.5.5. Concurrent Access Timeouts. 86

4.8.6. Operations Allowed in the Methods of a Singleton Session Bean . 86

4.9. The Responsibilities of the Bean Provider . 89

4.9.1. Classes and Interfaces . 89

4.9.2. Session Bean Class. 90

4.9.2.1. Session Bean Superclasses. 91

4.9.3. Lifecycle Callback Interceptor Methods . 91

4.9.4. Session Synchronization Methods . 92

4.9.5. ejbCreate<METHOD> Methods. 92

4.9.6. Business Methods . 93

4.9.7. Session Bean’s Business Interface. 93

4.9.8. Session Bean’s No-Interface View . 96

4.9.9. Session Bean’s Remote Component Interface . 96

4.9.10. Session Bean’s Remote Home Interface. 97

4.9.11. Session Bean’s Local Component Interface . 98

4.9.12. Session Bean’s Local Home Interface. 98

4.9.13. Session Bean’s Web Service Endpoint Interface . 98

4.10. The Responsibilities of the Container Provider. 99

4.10.1. Generation of Implementation Classes . 99

4.10.2. Generation of WSDL. 100

4.10.3. Session Business Interface Implementation Class . 100

4.10.4. No-Interface View Reference Class. 100

4.10.5. Session EJBHome Class . 100

4.10.6. Session EJBObject Class . 100

4.10.7. Session EJBLocalHome Class . 101

4.10.8. Session EJBLocalObject Class . 101

4.10.9. Web Service Endpoint Implementation Class . 101

4.10.10. Asynchronous Client Future<V> Return Value Implementation Class 101

4.10.11. Handle Classes. 101

4.10.12. EJBMetaData Class . 101

4.10.13. Non-reentrant Instances . 101

4.10.14. Transaction Scoping, Security, Exceptions . 102

4.10.15. Jakarta XML Web Services Message Handlers for Web Service Endpoints 102

4.10.16. SessionContext . 102

5. Message-Driven Bean Component Contract. 104

5.1. Overview. 104

5.2. Goals . 104

5.3. Client View of a Message-Driven Bean . 105

5.4. Protocol Between a Message-Driven Bean Instance and its Container . 106

5.4.1. Required MessageDrivenBean Metadata . 106

5.4.2. The Required Message Listener Interface. 106

5.4.3. Message-Driven Bean with No-Methods Listener Interface . 107

5.4.4. Dependency Injection . 107

5.4.5. The MessageDrivenContext Interface . 108

5.4.6. Message-Driven Bean Lifecycle Callback Interceptor Methods. 108

5.4.7. The Optional MessageDrivenBean Interface . 109

5.4.8. Timeout Callbacks. 110

5.4.9. Message-Driven Bean Creation . 110

5.4.10. Message Listener Interceptor Methods for Message-Driven Beans . 110

5.4.11. Serializing Message-Driven Bean Methods . 110

5.4.12. Concurrency of Message Processing . 110

5.4.13. Transaction Context of Message-Driven Bean Methods . 111

5.4.14. Security Context of Message-Driven Bean Methods . 111

5.4.15. Association of a Message-Driven Bean with a Destination or Endpoint 111

5.4.16. Activation Configuration Properties . 112

5.4.17. Jakarta Messaging Message-Driven Beans . 112

5.4.17.1. Message Acknowledgment . 112

5.4.17.2. Message Selectors . 112

5.4.17.3. Destination Type . 113

5.4.17.4. Destination Lookup . 113

5.4.17.5. Connection Factory Lookup . 114

5.4.17.6. Subscription Durability . 114

5.4.17.7. Subscription Name . 114

5.4.17.8. Client Identifier . 115

5.4.18. Dealing with Exceptions . 115

5.4.19. Missed PreDestroy Callbacks . 115

5.4.20. Replying to a Jakarta Messaging Message. 116

5.5. Message-Driven Bean State Diagram . 116

5.5.1. Operations Allowed in the Methods of a Message-Driven Bean Class . 117

5.6. The Responsibilities of the Bean Provider . 119

5.6.1. Classes and Interfaces . 119

5.6.2. Message-Driven Bean Class . 119

5.6.3. Message-Driven Bean Superclasses . 120

5.6.4. Message Listener Method . 120

5.6.5. Message-Driven Bean with No-Methods Listener Interface . 120

5.6.6. Lifecycle Callback Interceptor Methods . 121

5.7. The Responsibilities of the Container Provider. 121

5.7.1. Generation of Implementation Classes . 121

5.7.2. Deployment of Message-Driven Beans with No-Methods Listener Interface. 122

5.7.3. Deployment of Jakarta Messaging Message-Driven Beans . 122

5.7.4. Request/Response Messaging Types . 122

5.7.5. Non-reentrant Instances . 122

5.7.6. Transaction Scoping, Security, Exceptions . 122

6. Persistence . 123

7. Interceptors . 124

7.1. Overview. 124

7.2. Interceptor Life Cycle . 124

7.3. Business Method Interceptors . 124

7.4. Timer Timeout Method Interceptors . 125

7.5. Interceptors for LifeCycle Event Callbacks . 125

7.6. InvocationContext . 125

7.7. Exception Handling . 126

7.8. Specification of Interceptors in the Deployment Descriptor . 126

7.8.1. Specification of Interceptors . 126

7.8.2. Binding of Interceptors to Target Classes . 126

7.8.2.1. Examples . 129

8. Support for Transactions . 132

8.1. Overview. 132

8.1.1. Transactions . 132

8.1.2. Transaction Model . 133

8.1.3. Relationship to Jakarta Transactions . 133

8.2. Sample Scenarios . 134

8.2.1. Update of Multiple Databases . 134

8.2.2. Messages Sent or Received Over Jakarta Messaging Sessions and Update of Multiple

Databases. 134

8.2.3. Update of Databases via Multiple Enterprise Beans Servers . 136

8.2.4. Client-Managed Demarcation . 137

8.2.5. Container-Managed Demarcation. 137

8.3. Bean Provider’s Responsibilities. 139

8.3.1. Bean-Managed Versus Container-Managed Transaction Demarcation 139

8.3.1.1. Non-Transactional Execution. 139

8.3.2. Isolation Levels . 139

8.3.3. Enterprise Beans Using Bean-Managed Transaction Demarcation . 140

8.3.3.1. getRollbackOnly and setRollbackOnly Methods . 146

8.3.4. Enterprise Beans Using Container-Managed Transaction Demarcation. 147

8.3.4.1. jakarta.ejb.SessionSynchronization Interface . 148

8.3.4.2. jakarta.ejb.EJBContext.setRollbackOnly Method . 148

8.3.4.3. jakarta.ejb.EJBContext.getRollbackOnly method. 149

8.3.5. Use of Jakarta Messaging APIs in Transactions . 149

8.3.6. Specification of a Bean’s Transaction Management Type. 149

8.3.7. Specification of the Transaction Attributes for a Bean’s Methods . 150

8.3.7.1. Specification of Transaction Attributes with Metadata Annotations 152

8.3.7.2. Specification of Transaction Attributes in the Deployment Descriptor 154

8.4. Application Assembler’s Responsibilities . 157

8.5. Deployer’s Responsibilities. 158

8.6. Container Provider Responsibilities . 158

8.6.1. Bean-Managed Transaction Demarcation. 158

8.6.2. Container-Managed Transaction Demarcation for Session Beans . 161

8.6.2.1. Session Synchronization Callbacks . 161

8.6.3. Container-Managed Transaction Demarcation for Business Methods 161

8.6.3.1. NOT_SUPPORTED. 162

8.6.3.2. REQUIRED . 162

8.6.3.3. SUPPORTS . 162

8.6.3.4. REQUIRES_NEW. 163

8.6.3.5. MANDATORY . 163

8.6.3.6. NEVER . 163

8.6.3.7. Transaction Attribute Summary . 164

8.6.3.8. Handling of setRollbackOnly Method. 165

8.6.3.9. Handling of getRollbackOnly Method . 165

8.6.3.10. Handling of getUserTransaction Method . 165

8.6.3.11. Timing of Return Value Marshalling with Regard to Transaction Boundaries 165

8.6.4. Container-Managed Transaction Demarcation for Message-Driven Beans 165

8.6.5. Container-Managed Transaction Demarcation for Message Listener Methods 166

8.6.5.1. NOT_SUPPORTED. 166

8.6.5.2. REQUIRED . 166

8.6.5.3. Handling of setRollbackOnly Method. 167

8.6.5.4. Handling of getRollbackOnly Method . 167

8.6.5.5. Handling of getUserTransaction Method . 167

8.6.6. Local Transaction Optimization . 167

8.6.7. Handling of Methods that Run with "an unspecified transaction context" 167

8.7. Access from Multiple Clients in the Same Transaction Context . 168

8.7.1. Transaction "Diamond" Scenario with an Entity Object . 169

8.7.2. Container Provider’s Responsibilities . 170

8.7.3. Bean Provider’s Responsibilities . 170

8.7.4. Application Assembler and Deployer’s Responsibilities . 170

8.7.5. Transaction Diamonds involving Session Objects . 171

9. Exception Handling . 173

9.1. Overview and Concepts. 173

9.1.1. Application Exceptions . 173

9.1.2. Goals for Exception Handling . 173

9.2. Bean Provider’s Responsibilities. 174

9.2.1. Application Exceptions . 174

9.2.2. System Exceptions . 175

9.3. Container Provider Responsibilities . 177

9.3.1. Exceptions from a Session Bean’s Business Interface Methods and No-Interface View

Methods . 177

9.3.2. Exceptions from Method Invoked via Session Bean’s 2.1 Client View or through Web

Service Client View . 181

9.3.3. Exceptions from AroundConstruct, PostConstruct and PreDestroy Lifecycle Callbacks 185

9.3.4. Exceptions from Message-Driven Bean Message Listener Methods. 186

9.3.5. Exceptions from an Enterprise Bean’s Timeout Callback Method . 188

9.3.6. Exceptions from Other Container-invoked Callbacks . 189

9.3.7. Non-existing Stateful Session Object . 190

9.3.8. Exceptions from the Management of Container-Managed Transactions 190

9.3.9. Release of Resources . 191

9.3.10. Support for Deprecated Use of java.rmi.RemoteException . 191

9.4. Client’s View of Exceptions. 191

9.4.1. Application Exception . 192

9.4.1.1. Local and Remote Clients . 192

9.4.1.2. Web Service Clients. 192

9.4.2. java.rmi.RemoteException and jakarta.ejb.EJBException . 193

9.4.2.1. jakarta.ejb.EJBTransactionRolledbackException,

jakarta.ejb.TransactionRolledbackLocalException, and

jakarta.transaction.TransactionRolledbackException . 194

9.4.2.2. jakarta.ejb.EJBTransactionRequiredException,

jakarta.ejb.TransactionRequiredLocalException, and

jakarta.transaction.TransactionRequiredException . 194

9.4.2.3. jakarta.ejb.NoSuchEJBException, jakarta.ejb.NoSuchObjectLocalException, and

java.rmi.NoSuchObjectException . 194

9.5. System Administrator’s Responsibilities. 195

10. Enterprise Bean Environment . 196

10.1. Overview . 196

10.2. Enterprise Bean’s Environment as a JNDI Naming Context. 197

10.2.1. Sharing of Environment Entries . 198

10.2.2. Annotations for Environment Entries . 199

10.2.3. Annotations and Deployment Descriptors . 200

10.3. Responsibilities by Enterprise Beans Role . 201

10.3.1. Bean Provider’s Responsibilities. 201

10.3.2. Application Assembler’s Responsibility . 201

10.3.3. Deployer’s Responsibility . 202

10.3.4. Container Provider Responsibility . 202

10.4. Simple Environment Entries . 202

10.4.1. Bean Provider’s Responsibilities. 202

10.4.1.1. Injection of Simple Environment Entries Using Annotations . 203

10.4.1.2. Programming Interfaces for Accessing Simple Environment Entries 203

10.4.1.3. Declaration of Simple Environment Entries in the Deployment Descriptor 205

10.4.2. Application Assembler’s Responsibility . 210

10.4.3. Deployer’s Responsibility . 211

10.4.4. Container Provider Responsibility . 211

10.5. Enterprise Bean References. 211

10.5.1. Bean Provider’s Responsibilities. 212

10.5.1.1. Injection of Enterprise Bean References . 212

10.5.1.2. Enterprise Bean Reference Programming Interfaces. 214

10.5.1.3. Declaration of Enterprise Bean References in Deployment Descriptor. 215

10.5.2. Application Assembler’s Responsibilities . 217

10.5.2.1. Overriding Rules . 220

10.5.3. Deployer’s Responsibility . 221

10.5.4. Container Provider’s Responsibility. 222

10.6. Web Service References . 222

10.7. Resource Manager Connection Factory References. 222

10.7.1. Bean Provider’s Responsibilities. 223

10.7.1.1. Injection of Resource Manager Connection Factory References . 223

10.7.1.2. Programming Interfaces for Resource Manager Connection Factory References 223

10.7.1.3. Declaration of Resource Manager Connection Factory References in Deployment

Descriptor . 226

10.7.1.4. Standard Resource Manager Connection Factory Types . 228

10.7.2. Deployer’s Responsibility . 228

10.7.3. Container Provider Responsibility . 229

10.7.4. System Administrator’s Responsibility . 230

10.8. Resource Environment References . 230

10.8.1. Bean Provider’s Responsibilities. 230

10.8.1.1. Injection of Resource Environment References . 231

10.8.1.2. Resource Environment Reference Programming Interfaces . 231

10.8.1.3. Declaration of Resource Environment References in Deployment Descriptor 231

10.8.2. Deployer’s Responsibility . 231

10.8.3. Container Provider’s Responsibility. 232

10.9. Message Destination References. 232

10.9.1. Bean Provider’s Responsibilities. 232

10.9.1.1. Injection of Message Destination References. 232

10.9.1.2. Message Destination Reference Programming Interfaces . 233

10.9.1.3. Declaration of Message Destination References in Deployment Descriptor. 234

10.9.2. Application Assembler’s Responsibilities . 236

10.9.3. Deployer’s Responsibility . 239

10.9.4. Container Provider’s Responsibility. 239

10.10. Persistence Unit References. 240

10.10.1. Bean Provider’s Responsibilities. 240

10.10.1.1. Injection of Persistence Unit References. 240

10.10.1.2. Programming Interfaces for Persistence Unit References . 240

10.10.1.3. Declaration of Persistence Unit References in Deployment Descriptor. 242

10.10.2. Application Assembler’s Responsibilities . 243

10.10.2.1. Overriding Rules . 244

10.10.3. Deployer’s Responsibility . 245

10.10.4. Container Provider Responsibility . 245

10.10.5. System Administrator’s Responsibility . 245

10.11. Persistence Context References . 245

10.11.1. Bean Provider’s Responsibilities. 246

10.11.1.1. Injection of Persistence Context References. 246

10.11.1.2. Programming Interfaces for Persistence Context References . 246

10.11.1.3. Declaration of Persistence Context References in Deployment Descriptor 247

10.11.2. Application Assembler’s Responsibilities . 249

10.11.2.1. Overriding Rules . 250

10.11.3. Deployer’s Responsibility . 251

10.11.4. Container Provider Responsibility . 251

10.11.5. System Administrator’s Responsibility . 251

10.12. UserTransaction Interface . 252

10.12.1. Bean Provider’s Responsibility . 253

10.12.2. Container Provider’s Responsibility . 253

10.13. ORB References. 254

10.13.1. Bean Provider’s Responsibility . 255

10.13.2. Container Provider’s Responsibility . 255

10.14. TimerService References . 255

10.14.1. Bean Provider’s Responsibility . 255

10.14.2. Container Provider’s Responsibility . 255

10.15. EJBContext References . 255

10.15.1. Bean Provider’s Responsibility . 256

10.15.2. Container Provider’s Responsibility . 256

10.16. Support for Other Resources and Configuration Parameters . 256

11. Security Management . 257

11.1. Overview . 257

11.2. Bean Provider’s Responsibilities . 259

11.2.1. Invocation of Other Enterprise Beans . 259

11.2.2. Resource Access. 259

11.2.3. Access of Underlying OS Resources . 259

11.2.4. Programming Style Recommendations . 259

11.2.5. Programmatic Access to Caller’s Security Context . 260

11.2.5.1. Use of getCallerPrincipal . 260

11.2.5.2. Use of isCallerInRole. 262

11.2.5.3. Declaration of Security Roles Referenced from the Bean’s Code. 263

11.3. Responsibilities of the Bean Provider and/or Application Assembler. 265

11.3.1. Security Roles. 266

11.3.2. Method Permissions. 268

11.3.2.1. Specification of Method Permissions with Metadata Annotations 269

11.3.2.2. Specification of Method Permissions in the Deployment Descriptor 270

11.3.2.3. Unspecified Method Permissions . 273

11.3.3. Linking Security Role References to Security Roles . 273

11.3.4. Specification of Security Identities in the Deployment Descriptor. 274

11.3.4.1. Run-as . 275

11.4. Deployer’s Responsibilities . 276

11.4.1. Security Domain and Principal Realm Assignment . 277

11.4.2. Assignment of Security Roles. 277

11.4.3. Principal Delegation. 277

11.4.4. Security Management of Resource Access . 278

11.4.5. General Notes on Deployment Descriptor Processing . 278

11.5. Enterprise Beans Client Responsibilities . 278

11.6. Container Provider’s Responsibilities . 279

11.6.1. Deployment Tools . 279

11.6.2. Security Domain(s) . 279

11.6.3. Security Mechanisms . 279

11.6.4. Passing Principals on Enterprise Beans Calls . 280

11.6.5. Security Methods in jakarta.ejb.EJBContext. 280

11.6.6. Secure Access to Resource Managers. 281

11.6.7. Principal Mapping . 281

11.6.8. System Principal . 281

11.6.9. Runtime Security Enforcement . 281

11.6.10. Audit Trail. 282

11.7. System Administrator’s Responsibilities. 282

11.7.1. Security Domain Administration . 282

11.7.2. Principal Mapping . 283

11.7.3. Audit Trail Review . 283

12. Timer Service . 284

12.1. Overview . 284

12.2. Bean Provider’s View of the Timer Service . 284

12.2.1. Calendar-Based Time Expressions . 286

12.2.1.1. Calendar-Based Time Expression Attributes . 286

12.2.1.2. Attribute Syntax . 287

12.2.1.3. Expression Rules . 289

12.2.1.4. Examples . 289

12.2.2. Automatic Timer Creation . 291

12.2.3. Non-persistent Timers . 292

12.2.4. The TimerService Interface . 292

12.2.4.1. Example. 294

12.2.5. Timeout Callback Methods . 294

12.2.5.1. Timeout Callbacks for Programmatic Timers . 295

12.2.5.2. Timeout Callbacks for Automatically Created Timers . 295

12.2.5.3. Timeout Callback Method Requirements . 295

12.2.6. The Timer and TimerHandle Interfaces . 297

12.2.7. Timer Identity . 297

12.2.8. Transactions. 297

12.3. Bean Provider’s Responsibilities . 298

12.3.1. Enterprise Bean Class . 298

12.3.2. TimerHandle . 298

12.4. Container’s Responsibilities. 298

12.4.1. TimerService, Timer, and TimerHandle Interfaces . 298

12.4.2. Automatic Timers . 299

12.4.3. Timer Expiration and Timeout Callback Method . 299

12.4.4. Timer Cancellation . 299

13. Deployment Descriptor. 301

13.1. Overview . 301

13.2. Bean Provider’s Responsibilities . 302

13.3. Application Assembler’s Responsibility . 305

13.4. Container Provider’s Responsibilities . 308

13.5. Deployment Descriptor XML Schema . 308

14. Packaging . 380

14.1. Overview . 380

14.2. Deployment Descriptor . 380

14.3. Packaging Requirements . 381

14.4. Enterprise Beans Packaged in a .war file . 381

14.4.1. Class Loading . 382

14.4.2. Component Environment . 382

14.4.3. Visibility of the Local Client View . 382

14.4.4. Ejb-names . 382

14.4.5. Example . 383

14.5. Deployment Descriptor and Annotation Processing . 383

14.5.1. Ejb-jar Deployment Descriptor and Annotation Processing. 383

14.5.2. .war Deployment Descriptor and Annotation Processing. 383

14.6. The Client View and the ejb-client JAR File . 384

14.7. Requirements for Clients . 385

14.8. Example . 385

15. Runtime Environment . 387

15.1. Enterprise Beans Lite and Other Enterprise Beans API Groups . 387

15.1.1. Support for Other Enterprise Beans API Groups in an Enterprise Beans Lite Container . . 390

15.1.2. Integration with Other Technologies . 391

15.2. Bean Provider’s Responsibilities . 391

15.2.1. APIs Provided by Container . 391

15.2.2. Programming Restrictions . 391

15.3. Container Provider’s Responsibility . 393

15.3.1. Enterprise Beans Interfaces and Annotations Requirements . 394

15.3.2. JNDI Requirements. 395

15.3.3. Jakarta Transactions API Requirements . 395

15.3.4. JDBC™ API Requirements . 396

15.3.5. Jakarta Messaging API Requirements . 396

15.3.6. Argument Passing Semantics. 397

15.3.7. Other Requirements. 398

16. Compatibility and Migration . 399

16.1. Support for Existing Applications. 399

16.2. Default Stateful Session Bean Concurrency Behavior . 399

16.3. Default Application Exception Subclassing Behavior . 399

16.4. Interoperability of Enterprise Beans 3.2 and Earlier Components . 399

16.4.1. Clients written to the Enterprise Beans 2.x APIs. 400

16.4.2. Clients written to the Enterprise Beans 3.x API. 400

16.4.3. Combined use of Enterprise Beans 2.x and Enterprise Beans 3.x persistence APIs 400

16.5. Adapting Enterprise Beans 3.x Session Beans to Earlier Client Views . 400

16.5.1. Stateless Session Beans . 401

16.5.2. Stateful Session Beans . 401

17. Embeddable Usage. 403

17.1. Overview . 403

17.2. Bootstrapping API. 403

17.2.1. EJBContainer . 403

17.2.2. Standard Initialization Properties . 405

17.2.2.1. jakarta.ejb.embeddable.provider . 405

17.2.2.2. jakarta.ejb.embeddable.modules . 405

17.2.2.3. jakarta.ejb.embeddable.appName . 405

17.2.3. Looking Up Session Bean References. 406

17.2.4. Embeddable Container Shutdown . 406

17.3. Embeddable Container Provider’s Responsibilities . 406

17.3.1. Runtime Environment. 407

17.3.2. Naming Lookups . 407

17.3.3. Embeddable Container Bootstrapping. 407

17.3.4. Concrete jakarta.ejb.embeddable.EJBContainer Implementation Class 408

18. Responsibilities of Enterprise Beans Roles . 409

18.1. Bean Provider’s Responsibilities . 409

18.1.1. API Requirements . 409

18.1.2. Packaging Requirements. 409

18.2. Application Assembler’s Responsibilities . 409

18.3. Container Provider’s Responsibilities . 409

18.4. Deployer’s Responsibilities . 409

18.5. System Administrator’s Responsibilities. 410

18.6. Client Programmer’s Responsibilities . 410

Related Documents. 411

Appendix A: Revision History . 413

A.1. Public Draft . 413

A.2. Final Release Candidate . 413

A.3. Final Release . 413

Specification: Jakarta® Enterprise Beans, Core Features

Version: 4.0

Status: Final

Release: November 05, 2020

Preface

Final Jakarta® Enterprise Beans, Core Features 1

Copyright
Copyright © 2018, 2020 Eclipse Foundation. https://www.eclipse.org/legal/efsl.php

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc.
<<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright © [$date-of-document] Eclipse Foundation. This software or document includes material
copied from or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

Eclipse Foundation Specification License

2 Jakarta® Enterprise Beans, Core Features Final

https://www.eclipse.org/legal/efsl.php

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Eclipse Foundation Specification License

Final Jakarta® Enterprise Beans, Core Features 3

Chapter 1. Introduction
This is the specification of the Jakarta® Enterprise Beans architecture. The Enterprise Beans
architecture is an architecture for the development and deployment of component-based business
applications. Applications written using the Enterprise Beans architecture are scalable, transactional,
and multi-user secure. These applications may be written once, and then deployed on any server
platform that supports the Enterprise Beans specification.

1.1. Target Audience
The target audiences for this specification are the vendors of transaction processing platforms, vendors of
enterprise application tools, and other vendors who want to support the Enterprise Beans technology in
their products.

Many concepts described in this document are system-level issues that are transparent to the Enterprise
Beans application programmer.

1.2. What is New in This Release
The Enterprise Beans 4.0 specification is a breaking change from prior Enterprise Beans specifications
delivering a namespace change from javax to jakarta across the API along with removal of deprecated
APIs.

• All javax.ejb namespace/packages have been renamed to jakarta.ejb.

• Removed the methods relying on java.security.Identity which has been removed from the Java 14.

• Removed the methods relying on Jakarta XML RPC to reflect the removal of XML RPC from the
Jakarta EE 9 Platform.

• Removed the deprecated EJBContext.getEnvironment() method.

• Removed the “Support for Distributed Interoperability” to reflect the removal of CORBA from Java 11
and the Jakarta EE 9 Platform.

• Marked the Enterprise Beans 2.x API Group as “Optional”.

• @Schedule annotation is now repeatable.

1.3. What was New in Jakarta Enterprise Beans 3.2
The Jakarta Enterprise Beans 3.2 [27] architecture is the first official release from the Eclipse
Foundation under the specification’s new name of “Jakarta Enterprise Beans” after the successful
donation of Enterprise JavaBeans by Oracle.

The Jakarta Enterprise Beans 3.2 release is identical to Enterprise JavaBeans 3.2 and only differs by
name and license.

1.1. Target Audience

4 Jakarta® Enterprise Beans, Core Features Final

1.4. What was New in Enterprise JavaBeans 3.2
The Enterprise JavaBeans 3.2 [1] architecture extends Enterprise JavaBeans to include the following
new functionality and simplifications to the earlier Enterprise JavaBeans APIs:

• Made support for the following features optional in this release and moved their description to a
separate Enterprise JavaBeans Optional Features [2] document:

◦ Enterprise JavaBeans 2.1 and earlier Entity Bean Component Contract for Container-Managed
Persistence

◦ Enterprise JavaBeans 2.1 and earlier Entity Bean Component Contract for Bean-Managed
Persistence

◦ Client View of an Enterprise JavaBeans 2.1 and earlier Entity Bean

◦ Enterprise JavaBeans QL: Query Language for Container-Managed Persistence Query Methods

◦ Jakarta XML RPC Based Web Service Endpoints

◦ Jakarta XML RPC Web Service Client View

• Enhanced message-driven beans contract with a no-methods message listener interface to expose all
public methods as message listener methods.

• Defined the Enterprise JavaBeans API Groups with clear rules for an Enterprise JavaBeans Lite
Container to support other API groups.

• Added container provided security role named “**” to indicate any authenticated caller independent
of the actual role name.

• Extended the Enterprise JavaBeans Lite Group to include local asynchronous session bean invocations
and non-persistent Enterprise JavaBeans Timer Service.

• Added an option for the lifecycle callback interceptor methods of stateful session beans to be executed
in a transaction context determined by the lifecycle callback method’s transaction attribute.

• Introduced an option to disable passivation of stateful session beans.

• Enhanced the TimerService API to access all active timers in the Enterprise JavaBeans module.

• Enhanced the embeddable EJBContainer to implement AutoCloseable interface.

• Removed restrictions on jakarta.ejb.Timer and jakarta.ejb.TimerHandle that required references to
be used only inside a bean.

• Relaxed default rules for a session bean to designate its implemented interfaces as local or as remote
business interfaces.

• Enhanced the list of standard Jakarta® Messaging MDB activation properties.

• Simplified requirements for definition of a security role using the ejb deployment descriptor.

• Removed restriction on obtaining the current class loader; replaced ‘must not’ with ‘should exercise
caution’ when using the Java I/O package.

1.4. What was New in Enterprise JavaBeans 3.2

Final Jakarta® Enterprise Beans, Core Features 5

1.5. What was New in Enterprise JavaBeans 3.1
The Enterprise JavaBeans 3.1 [28] architecture extended Enterprise JavaBeans to include the following
new functionality and simplifications to the earlier Enterprise JavaBeans APIs:

• A simplified local view that provides session bean access without a separate local business interface.

• Packaging and deployment of Enterprise JavaBeans components directly in a .war file without an ejb-
jar file.

• An embeddable API for executing Enterprise JavaBeans components within a Java SE environment.

• A singleton session bean component that provides easy access to shared state as well as application
startup and shutdown callbacks.

• Automatically created Enterprise JavaBeans Timers.

• Calendar-based Enterprise JavaBeans Timer expressions.

• Asynchronous session bean invocations.

• The definition of a lightweight subset of Enterprise JavaBeans functionality that is provided within the
Jakarta® EE Web Profile.

• A portable global JNDI name syntax for looking up Enterprise JavaBeans components.

1.5.1. What was New in Enterprise JavaBeans 3.0

The Enterprise JavaBeans 3.0 [29] architecture extended Enterprise JavaBeans to include the following
new functionality and simplifications to the earlier Enterprise JavaBeans APIs:

• Definition of the Java language metadata annotations that can be used to annotate Enterprise
JavaBeans applications. These metadata annotations are targeted at simplifying the developer’s task,
at reducing the number of program classes and interfaces the developer is required to implement, and
at eliminating the need for the developer to provide an Enterprise JavaBeans deployment descriptor.

• Specification of programmatic defaults, including for metadata, to reduce the need for the developer
to specify common, expected behaviors and requirements on the Enterprise JavaBeans container. A
"configuration by exception" approach is taken whenever possible.

• Encapsulation of environmental dependencies and JNDI access through the use of annotations,
dependency injection mechanisms, and simple lookup mechanisms.

• Simplification of the enterprise bean types.

• Elimination of the requirement for Enterprise JavaBeans component interfaces for session beans. The
required business interface for a session bean can be a plain Java interface rather than an EJBObject,
EJBLocalObject, or java.rmi.Remote interface.

• Elimination of the requirement for home interfaces for session beans.

• Simplification of entity persistence through the Jakarta® Persistence [3]. Support for light-weight
domain modeling, including inheritance and polymorphism.

1.5. What was New in Enterprise JavaBeans 3.1

6 Jakarta® Enterprise Beans, Core Features Final

• Specification of Java language metadata annotations and XML deployment descriptor elements for the
object/relational mapping of persistent entities [3].

• A query language for Jakarta Persistence that is an extension to Enterprise JavaBeans QL, with
addition of projection, explicit inner and outer join operations, bulk update and delete, subqueries,
and group-by. Addition of a dynamic query capability and support for native SQL queries.

• An interceptor facility for session beans and message-driven beans.

• Reduction of the requirements for usage of checked exceptions.

• Elimination of the requirement for the implementation of callback interfaces.

1.6. Acknowledgements
The Enterprise Beans 4.0 specification work was done under the Jakarta EE Specification Process
(JESP).

1.7. Acknowledgements for Enterprise JavaBeans 3.2
The Enterprise JavaBeans 3.2 specification work was conducted as part of JSR-345 under the Java
Community Process Program. This specification is the result of the collaborative work of the members
of the Enterprise JavaBeans 3.2 Expert Group: Caucho Technology, Inc: Reza Rahman; IBM: Jeremy
Bauer; Oracle: Marina Vatkina, Linda DeMichiel; OW2: Florent Benoit; Pramati Technologies: Ravikiran
Noothi; RedHat: Pete Muir, Carlo de Wolf; TmaxSoft, Inc.: Miju Byon; individual members: Adam Bien;
David Blevins; Antonio Goncalves; Stefan Heldt; Richard Hightower, Jean-Louis Monteiro.

1.8. Organization of the Specification Documents
This specification is organized into the following documents:

• Enterprise Beans Core Features

• Enterprise Beans Optional Features

This Enterprise Beans Core Features document defines the contracts and requirements for the use and
implementation of Enterprise Beans. These contracts include those for the Enterprise Beans 4.0 API, as
well as for the earlier Enterprise Beans API that is required to be supported in this release. See
Runtime Environment for coverage of the Enterprise Beans API requirements.

The Enterprise Beans Optional Features document [2] defines the contracts and requirements for the
use and implementation of features support for which has been made optional as of Enterprise
JavaBeans, 3.2. These contracts are separated from the core contracts requirements of the Enterprise
JavaBeans 3.1 specification.

1.6. Acknowledgements

Final Jakarta® Enterprise Beans, Core Features 7

1.9. Document Conventions
The regular font is used for information that is prescriptive by the Enterprise Beans specification.

The italic font is used for paragraphs that contain descriptive information, such as notes describing
typical use, or notes clarifying the text with prescriptive specification.

The monospace font is used for code examples.

1.9. Document Conventions

8 Jakarta® Enterprise Beans, Core Features Final

Chapter 2. Overview

2.1. Overall Goals
The Enterprise Beans architecture has the following goals:

• The Enterprise Beans architecture will be the standard component architecture for building object-
oriented business applications in the Java™ programming language.

• The Enterprise Beans architecture will support the development, deployment, and use of distributed
business applications in the Java™ programming language.

• The Enterprise Beans architecture will support the development, deployment, and use of web services.

• The Enterprise Beans architecture will make it easy to write applications: application developers will
not have to understand low-level transaction and state management details, multi-threading,
connection pooling, or other complex low-level APIs.

• Enterprise Beans applications will follow the Write Once, Run Anywhere™ philosophy of the Java
programming language. An enterprise bean can be developed once, and then deployed on multiple
platforms without recompilation or source code modification.

• The Enterprise Beans architecture will address the development, deployment, and runtime aspects of
an enterprise application’s life cycle.

• The Enterprise Beans architecture will define the contracts that enable tools from multiple vendors to
develop and deploy components that can interoperate at runtime.

• The Enterprise Beans architecture will make it possible to build applications by combining
components developed using tools from different vendors.

• The Enterprise Beans architecture will provide interoperability between enterprise beans and Jakarta
EE components as well as non-Java programming language applications.

• The Enterprise Beans architecture will be compatible with existing server platforms. Vendors will be
able to extend their existing products to support Enterprise Beans.

• The Enterprise Beans architecture will be compatible with other Java programming language APIs.

• The Enterprise Beans architecture will be compatible with the CORBA protocols.

The purpose of the Enterprise Beans 4.0 release is both to continue to achieve these goals and to
improve the Enterprise Beans architecture by reducing its complexity from the enterprise application
developer’s point of view.

2.2. Enterprise Beans Roles
The Enterprise Beans architecture defines six distinct roles in the application development and
deployment life cycle. Each Enterprise Beans role may be performed by a different party. The Enterprise
Beans architecture specifies the contracts that ensure that the product of each Enterprise Beans role is

2.1. Overall Goals

Final Jakarta® Enterprise Beans, Core Features 9

compatible with the product of the other Enterprise Beans roles. The Enterprise Beans specification
focuses on those contracts that are required to support the development and deployment of enterprise
beans.

In some scenarios, a single party may perform several Enterprise Beans Roles. For example, the
Container Provider and the Server Provider may be the same vendor. Or a single programmer may
perform the roles of the Bean Provider and the Application Assembler.

The following sections define the six Enterprise Beans roles.[1]

2.2.1. Enterprise Bean Provider

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His or her
output is a set of one or more enterprise beans. These beans may be contained in a ejb-jar or may be
contained directly in a .war file. The Bean Provider is responsible for the Java classes that implement
the enterprise beans’ business methods; the definition of the beans’ client view interfaces, if any; and
the declarative specification of the beans’ metadata. The beans’ metadata may take the form of
metadata annotations applied to the bean classes and/or an external XML deployment descriptor. The
beans’ metadata—whether expressed in metadata annotations or in the deployment
descriptor—includes the structural information of the enterprise beans and declares all the enterprise
beans’ external dependencies (e.g. the names and types of resources that the enterprise beans use).

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider develops
reusable enterprise beans that typically implement business tasks or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the Bean
Provider usually does not program transactions, concurrency, security, distribution, or other services into
the enterprise beans. The Bean Provider relies on the container for these services.

A Bean Provider of multiple enterprise beans often performs the role of the Application Assembler.

2.2.2. Application Assembler

The Application Assembler combines enterprise beans into larger deployable application units. The
input to the Application Assembler is a set of enterprise beans, their interfaces, and metadata, as
produced by the Bean Provider(s). The Bean Provider’s output may also simply be un-assembled
enterprise beans that must be packaged in an ejb-jar file or .war file. The Application Assembler may
insert the application assembly instructions into the deployment descriptors. The Application
Assembler will create one or more ejb-jar and/or .war files from the input artifacts together with their
application assembly instructions as needed.

All of the input could be combined into a single output ejb-jar file or .war file. Similarly, the input could
also be split into multiple output ejb-jar and/or .war files. For example, the Application Assembler
could combine ejb1.jar and ejb2.jar into ejb3.jar, combine ejb1.jar and web1.war into web2.war, split
ejb1.jar into ejb2.jar and ejb3.jar, split web1.war into ejb1.jar and web2.jar, and so forth. Each output

2.2. Enterprise Beans Roles

10 Jakarta® Enterprise Beans, Core Features Final

ejb-jar file or .war file is either a deployment unit intended for the Deployer or a partially assembled
application that is intended for another Application Assembler.

The Application Assembler can also combine enterprise beans with other types of application
components when composing an application.

The Enterprise Beans specification describes the case in which the application assembly step occurs
before the deployment of the enterprise beans. However, the Enterprise Beans architecture does not
preclude the case that application assembly is performed after the deployment of all or some of the
enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise beans. The
Application Assembler works with the enterprise beans’ metadata annotations and/or deployment
descriptor and the enterprise beans’ client-view contract. Although the Assembler must be familiar with
the functionality provided by the enterprise beans’ client-view, he or she does not need to have any
knowledge of the enterprise beans’ implementation.

2.2.3. Deployer

The Deployer takes one or more ejb-jar files and/or .war file produced by a Bean Provider or
Application Assembler and deploys the enterprise beans contained in the ejb-jar files or .war files in a
specific operational environment. The operational environment includes an Enterprise Beans
container and server.

The Deployer must resolve all the external dependencies declared by the Bean Provider (e.g. the
Deployer must ensure that all resource manager connection factories used by the enterprise beans are
present in the operational environment, and he or she must bind them to the resource manager
connection factory references declared in the metadata annotations or deployment descriptor), and
must follow the application assembly instructions defined by the Application Assembler. To perform
his or her role, the Deployer uses tools provided by the Container Provider.

The Deployer’s output is a set of enterprise beans (or an assembled application that includes enterprise
beans) that have been customized for the target operational environment, and that are deployed in a
specific Enterprise Beans container.

The Deployer is an expert at a specific operational environment and is responsible for the deployment of
enterprise beans. For example, the Deployer is responsible for mapping the security roles defined by the
Bean Provider or Application Assembler to the user groups and accounts that exist in the operational
environment in which the enterprise beans are deployed.

The Deployer uses tools supplied by the Container Provider to perform the deployment tasks. The
deployment process is typically two-stage:

• The Deployer first generates the additional classes and interfaces that enable the container to manage
the enterprise beans at runtime. These classes are container-specific.

• The Deployer performs the actual installation of the enterprise beans and the additional classes and

2.2. Enterprise Beans Roles

Final Jakarta® Enterprise Beans, Core Features 11

interfaces into the Enterprise Beans container.

In some cases, a qualified Deployer may customize the business logic of the enterprise beans at their
deployment. Such a Deployer would typically use the Container Provider’s tools to write relatively simple
application code that wraps the enterprise beans’ business methods.

2.2.4. Enterprise Beans Server Provider

The Enterprise Beans Server Provider (Server Provider for short) is a specialist in the area of distributed
transaction management, distributed objects, and other lower-level system-level services.

The current Enterprise Beans architecture assumes that the Server Provider and the Container Provider
roles are the same vendor. Therefore, it does not define any interface requirements for the Server
Provider.

2.2.5. Enterprise Beans Container Provider

The Enterprise Beans Container Provider (Container Provider for short) provides:

• The deployment tools necessary for the deployment of enterprise beans.

• The runtime support for the deployed enterprise bean instances.

From the perspective of the enterprise beans, the container is a part of the target operational
environment. The container runtime provides the deployed enterprise beans with transaction and
security management, network distribution of remote clients, scalable management of resources, and
other services that are generally required as part of a manageable server platform.

The "Enterprise Beans Container Provider’s responsibilities" defined by the Enterprise Beans
architecture are meant to be requirements for the implementation of the Enterprise Beans container
and server. Since the Enterprise Beans specification does not architect the interface between the
Enterprise Beans container and server, it is left up to the vendor how to split the implementation of the
required functionality between the Enterprise Beans container and server.

The expertise of the Container Provider is system-level programming, possibly combined with some
application-domain expertise. The focus of a Container Provider is on the development of a scalable,
secure, transaction-enabled container that is integrated with an Enterprise Beans server. The Container
Provider insulates the enterprise bean from the specifics of an underlying Enterprise Beans server by
providing a simple, standard API between the enterprise bean and the container. This API is the
Enterprise Beans component contract.

The Container Provider typically provides support for versioning the installed enterprise bean
components. For example, the Container Provider may allow enterprise bean classes to be upgraded
without invalidating existing clients or losing existing enterprise bean objects.

The Container Provider typically provides tools that allow the System Administrator to monitor and
manage the container and the beans running in the container at runtime.

2.2. Enterprise Beans Roles

12 Jakarta® Enterprise Beans, Core Features Final

2.2.6. System Administrator

The System Administrator is responsible for the configuration and administration of the enterprise’s
computing and networking infrastructure that includes the Enterprise Beans server and container. The
System Administrator is also responsible for overseeing the well-being of the deployed enterprise
beans applications at runtime.

2.3. Enterprise Beans
Enterprise Beans is an architecture for component-based transaction-oriented enterprise applications.

2.3.1. Characteristics of Enterprise Beans

The essential characteristics of an enterprise bean are:

• An enterprise bean typically contains business logic that operates on the enterprise’s data.

• An enterprise bean’s instances are managed at runtime by a container.

• An enterprise bean can be customized at deployment time by editing its environment entries.

• Various service information, such as transaction and security attributes, may be specified together
with the business logic of the enterprise bean class in the form of metadata annotations, or
separately, in an XML deployment descriptor. This service information may be extracted and
managed by tools during application assembly and deployment.

• Client access is mediated by the container in which the enterprise bean is deployed.

• If an enterprise bean uses only the services defined by the Enterprise Beans specification, the
enterprise bean can be deployed in any compliant Enterprise Beans container. Specialized
containers can provide additional services beyond those defined by the Enterprise Beans
specification. An enterprise bean that depends on such a service can be deployed only in a
container that supports that service.

• An enterprise bean can be included in an assembled application without requiring source code
changes or recompilation of the enterprise bean.

• The Bean Provider defines a client view of an enterprise bean. The Bean Provider can manually
define the client view or it can be generated automatically by application development tools. The
client view is unaffected by the container and server in which the bean is deployed. This ensures
that both the beans and their clients can be deployed in multiple execution environments without
changes or recompilation.

2.3.2. Flexible Model

The enterprise bean architecture is flexible enough to implement the following:

• An object that represents a stateless service.

• An object that represents a stateless service and that implements a web service endpoint.

2.3. Enterprise Beans

Final Jakarta® Enterprise Beans, Core Features 13

• An object that represents a stateless service and whose invocation is asynchronous, driven by the
arrival of messages.

• An object that represents a conversational session with a particular client. Such session objects
automatically maintain their conversational state across multiple client-invoked methods.

Enterprise beans that are remotely accessible components are intended to be relatively coarse-grained
business objects or services (e.g. shopping cart, stock quote service). In general, fine-grained objects
should not be modeled as remotely accessible components.

Although the state management protocol defined by the Enterprise Beans architecture is simple, it
provides an enterprise bean developer great flexibility in managing a bean’s state.

2.4. Enterprise Bean Object Types
The Enterprise Beans architecture defines the following types of enterprise bean objects:

• Session objects.

• Message-driven objects.

• Entity objects (optional).

Support for session objects and message-driven objects is required by this specification.

Earlier versions of the Enterprise Beans specification required support for entity bean components (not
to be confused with the light-weight persistent entities defined by the Jakarta Persistence). Support for
entity bean components has been made optional for an implementation as of the 3.2 version of the
Enterprise Beans specification and is described in the Enterprise Beans Optional Features document [2].

2.4.1. Session Objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

• Can be transaction-aware.

• Updates shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and update such data.

• May be relatively short-lived, or may have the same lifetime as that of the application.

• Is removed when the Enterprise Beans container crashes. The client has to re-establish a new session
object to continue computation.

A typical Enterprise Beans container provides a scalable runtime environment to execute a large number
of session objects concurrently.

The Enterprise Beans specification defines stateful, stateless, and singleton session beans. There are

2.4. Enterprise Bean Object Types

14 Jakarta® Enterprise Beans, Core Features Final

differences in the API between stateful session beans, stateless session beans, and singleton session beans.

2.4.2. Message-Driven Objects

A typical message-driven object has the following characteristics:

• Executes upon receipt of a single client message.

• Is asynchronously invoked.

• Can be transaction-aware.

• May update shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and update such data.

• Is relatively short-lived.

• Is stateless.

• Is removed when the Enterprise Beans container crashes. The container has to re-establish a new
message-driven object to continue computation.

A typical Enterprise Beans container provides a scalable runtime environment to execute a large number
of message-driven objects concurrently.

2.4.3. Entity Objects (Optional)

A typical entity object has the following characteristics:

• Is part of a domain model, providing an object view of data in the database.

• Can be long-lived (lives as long as the data in the database).

• The entity and its primary key survive the crash of the Enterprise Beans container. If the state of an
entity was being updated by a transaction at the time the container crashed, the entity’s state is
restored to the state of the last committed transaction when the entity is next retrieved.

See the Enterprise Beans Optional Features [2] document for details.

2.5. Mapping to Web Service Protocols
To support web service interoperability, the Enterprise Beans specification requires compliant
implementations to support XML-based web service invocations using WSDL and SOAP or plain XML
over HTTP in conformance with the requirements of the Jakarta® XML Web Services [4], Jakarta®
Enterprise Web Services [5], and Jakarta® Web Services Metadata [6] specifications.

2.6. Pruning the Enterprise Beans API
The Jakarta® EE Platform adopted the process defined by the Java SE group for "pruning" technologies
from the platform in a careful and orderly way that minimizes the impact to developers using these

2.5. Mapping to Web Service Protocols

Final Jakarta® Enterprise Beans, Core Features 15

technologies while allowing the platform to grow even stronger.

The result of pruning a feature is not the actual deletion of the feature but rather the conversion of the
feature from a required part of the Enterprise Beans API into an optional part of the Enterprise Beans
API. No actual removal from the specification occurs, although the feature may be removed from
products at the choice of the product vendor.

Support for the following features has been made optional in the Enterprise Beans specification as of
the 3.2 release and the content of the related chapters had been moved to the separate Enterprise
Beans Optional Features document [2]. An implementation of this specification is therefore not
required to support any of these features. However, if an implementation chooses to implement an
optional feature, it must do so in accordance with the requirements of this specification.

• Enterprise Beans 2.1 and earlier Entity Bean Component Contract for Container-Managed
Persistence

• Enterprise Beans 2.1 and earlier Entity Bean Component Contract for Bean-Managed Persistence

• Client View of an Enterprise Beans 2.1 and earlier Entity Bean

• Enterprise Beans QL: Enterprise Beans Query Language for Container-Managed Persistence Query
Methods

2.7. Relationship to Jakarta Managed Beans
The Jakarta® Managed Beans [7] defines the minimal requirements for container-managed objects,
otherwise known under the acronym "POJOs" (Plain Old Java Objects), within the Jakarta EE Platform.
Managed Beans support a small set of basic services, such as resource injection, lifecycle callbacks and
interceptors.

A session bean component is a Managed Bean. The Enterprise Beans component model extends the
basic Managed Bean model in many areas (component definition, naming, lifecycle, threading, etc.)

2.8. Relationship to Jakarta Contexts and Dependency
Injection
The Jakarta® Contexts and Dependency Injection [8] provides a uniform framework for the dependency
injection and lifecycle management of "managed beans" and adds contextual lifecycle management to
the Enterprise Beans component model.

An Enterprise Beans packaged into a CDI bean archive and not annotated with
jakarta.enterprise.inject.Vetoed annotation, is considered a CDI-enabled bean. The CDI container
performs dependency injection on all instances of CDI-enabled session and message-driven beans,
even those which are not contextual instances:

• A session bean instance obtained via dependency injection is a contextual instance, i.e. it is bound
to a lifecycle context and is available to other objects that execute in the same context

2.7. Relationship to Jakarta Managed Beans

16 Jakarta® Enterprise Beans, Core Features Final

• A message-driven bean instance is always non-contextual, i.e. it may not be injected into other
objects.

2.9. Relationship to Jakarta RESTful Web Services
The Jakarta® RESTful Web Services [9] defines a set of Java APIs for the development of Web services
built according to the Representational State Transfer (REST) architectural style.

The RESTful Web Services API provides a set of annotations and associated classes and interfaces that
may be used to expose beans as Web resources.

In a product that supports the RESTful Web Services specification, stateless and singleton session beans
must be supported as root resource classes, providers, and jakarta.ws.rs.core.Application subclasses.
RESTful Web Services annotations may be applied to a session bean class, methods of a session bean’s
no-interface view, or a session bean’s local business interface.

[1] Earlier releases of this specification distinguished a seventh role, that of the persistence provider. The role of the
persistence provider is independent of that of the Enterprise Beans specification, which assumes that a Jakarta
Persistence implementation may be pluggable. See [3].

2.9. Relationship to Jakarta RESTful Web Services

Final Jakarta® Enterprise Beans, Core Features 17

Chapter 3. Client View of a Session Bean
This chapter describes the client view of a session bean. The session bean itself implements the
business logic. The bean’s container provides functionality for remote access, security, concurrency,
transactions, and so forth.

While classes implemented by the container provide the client view of the session bean, the container
itself is transparent to the client.

3.1. Overview
For a client, a session object is a non-persistent object that implements some business logic running on
the server. One way to think of a session object is as a logical extension of the client program that runs
on the server. A stateless or stateful session bean object is not shared among multiple clients.

A client can invoke a session bean synchronously or asynchronously. An asynchronous method can
return a Future<V> object that allows the client to retrieve a result value, check for exceptions, or
attempt to cancel an in-progress invocation.

From its creation until destruction, a session object lives in a container. The container provides
security, concurrency, transactions, swapping to secondary storage, and other services for the session
object transparently to the client.

Each session object has an identity which, in general, does not survive a crash and restart of the
container, although a high-end container implementation can mask container and server crashes to a
remote or web service client.

A client never directly accesses instances of the session bean’s class. A client accesses a session object
through the session bean’s client view.

The client view of a session object is independent of the implementation of the session bean and the
container.

The client of a session bean may be a local client, a remote client, or a web service client, depending on
the view(s) provided by the bean and used by the client.

Multiple enterprise beans can be installed in a container. The container allows the clients of session
beans that provide local or remote client views to obtain the business interfaces and/or home
interfaces of the installed enterprise beans through dependency injection or to look them up via JNDI.

While it is possible to provide more than one client view for a session bean, typically only one will be
provided.

A remote client of an session bean can be another enterprise bean deployed in the same or different
container; or it can be an arbitrary Java program, such as an application, applet, or servlet. The client
view of a session bean can also be mapped to non-Java client environments, such as CORBA clients that

3.1. Overview

18 Jakarta® Enterprise Beans, Core Features Final

are not written in the Java programming language.

The interface used by a remote client of a session bean is implemented by the container as a remote
business interface (or a remote EJBObject interface), and the remote client view of a session bean is
location-independent. A client running in the same JVM as the session object uses the same API as a
client running in a different JVM on the same or different machine.

Use of a session bean’s local client view entails the collocation of the local client and the session. The
local client of an enterprise bean must be collocated in the same container as the bean. The local client
view is not location-independent.

The client of a stateless session bean or singleton session bean may be a web service client. Only a
stateless session bean or singleton session bean may provide a web service client view. A web service
client makes use of the enterprise bean’s web service client view, as described by a WSDL document.
The bean’s client view web service endpoint is in terms of a Jakarta XML Web Services endpoint [4].
Web service clients are discussed in Web Service Clients and The Web Service Client View of a Stateless
or Singleton Session Bean.

The considerations that should be taken into account in determining the client view to be used for a
session bean are further described in Local, Remote, and Web Service Client Views.

3.2. Local, Remote, and Web Service Client Views
This section describes some of the considerations the Bean Provider should take into account in
determining the client view to provide for an enterprise bean.

Terminology note:

Enterprise Beans 3.0 significantly simplified the client view of a session bean. This specification
distinguishes among the client view interfaces that were defined by the Enterprise Beans 3.0 and later API
and the Enterprise Beans 2.1 and earlier API as follows:

• The term remote business interface is used to refer to the business interface of an Enterprise Beans
3.x session bean that supports remote access.

• The term remote component interface is used to refer to the remote component interface of the
Enterprise Beans 2.1 client view. This interface is an EJBObject interface.

• The term local business interface refers to the local business interface of an Enterprise Beans 3.x
session bean that supports local access.

• The term local component interface is used to refer to the local component interface of the
Enterprise Beans 2.1 client view. This interface is an EJBLocalObject interface.

• The term business interface is used to refer to a local or remote business interface.

• The term component interface is used to refer to a local or remote component interface
(EJBLocalObject or EJBObject interface).

• The term business method is used to refer to a method of an enterprise bean that is available for

3.2. Local, Remote, and Web Service Client Views

Final Jakarta® Enterprise Beans, Core Features 19

client execution. It may be a method exposed by the local or remote business interface, by the no-
interface view, by the local component interface, by the remote component interface, or by the web
service client view.

3.2.1. Remote Clients

The remote client view of an enterprise bean is location independent. A client running in the same JVM
as a bean instance uses the same API to access the bean as a client running in a different JVM on the
same or different machine.

The arguments and results of the methods of the remote interfaces are passed by value.

For a session bean client and component written to the Enterprise Beans 3.x API, a remote client
accesses a session bean through the bean’s remote business interface. For a session bean client and
component written to the Enterprise Beans 2.1 and earlier APIs, the remote client accesses the session
bean through the session bean’s remote home and remote component interfaces.

Compatibility Note: The Enterprise Beans 2.1 and earlier API required that a remote client access the
stateful or stateless session bean by means of the session bean’s remote home and remote component
interfaces. These interfaces remain available for use with Enterprise Beans 3.x beans, and are described in
Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API.

3.2.2. Local Clients

Session beans may have local clients. A local client is a client that is collocated in the same JVM with
the session bean that provides the local client view and which may be tightly coupled to the bean. A
local client of a session bean may be another enterprise bean or a web component.

Access to an enterprise bean through the local client view requires the collocation in the same JVM of
both the local client and the enterprise bean that provides the local client view. The local client view
therefore does not provide the location transparency provided by the remote client view.

Access to an enterprise bean through the local client view is only required to be supported for local
clients packaged within the same application as the enterprise bean that provides the local client view.
Compliant implementations of this specification may optionally support access to the local client view
of an enterprise bean from a local client packaged in a different application. The configuration
requirements for inter-application access to the local client view are vendor-specific and are outside
the scope of this specification. Applications relying on inter-application access to the local client view
are non-portable.

The arguments and results of the methods of the local client view are passed "by reference".[2]

Enterprise beans that provide a local client view should therefore be coded to assume that the state of
any Java object that is passed as an argument or result is potentially shared by caller and callee.

3.2. Local, Remote, and Web Service Client Views

20 Jakarta® Enterprise Beans, Core Features Final

The Bean Provider must be aware of the potential sharing of objects passed through invocations of
the local client view. In particular, the Bean Provider must be careful that the state of one
enterprise bean is not assigned as the state of another. In general, the references that are passed
across invocations of the local client view cannot be used outside of the immediate call chain and
must never be stored as part of the state of another enterprise bean. The Bean Provider must also
exercise caution in determining which objects to pass across the local view. This caution applies
particularly in the case where there is a change in transaction or security context.

For a session bean client and component written to the Enterprise Beans 3.x API, a local client accesses
a session bean through the bean’s local business interface or through a no-interface client view
representing all non-static public methods of the bean class. For a session bean client and component
written to the Enterprise Beans 2.1 and earlier APIs, the local client accesses the enterprise bean
through the bean’s local home and local component interfaces. The container object that implements a
local interface or the no-interface local view is a local Java object.

Compatibility Note: The Enterprise Beans 2.1 and earlier API required that a local client access a stateful
or stateless session bean by means of the session bean’s local home and local component interfaces. These
interfaces remain available for use with Enterprise Beans 3.x beans, and are described in Remote and
Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API.

3.2.3. Choosing Between a Local or Remote Client View

The following considerations should be taken into account in determining whether a local or remote
access should be used for an enterprise bean.

• The remote programming model provides location independence and flexibility with regard to the
distribution of components in the deployment environment. It provides a loose coupling between
the client and the bean.

• Remote calls involve pass-by-value. This copy semantics provides a layer of isolation between caller
and callee, and protects against the inadvertant modification of data. The client and the bean may
be programmed to assume this parameter copying.

• Remote calls are potentially expensive. They involve network latency, overhead of the client and
server software stacks, argument copying, etc. Remote calls are typically programmed in a coarse-
grained manner with few interactions between the client and bean.

• The objects that are passed as parameters on remote calls must be serializable.

• When the Enterprise Beans 2.1 and earlier remote home and remote component interfaces are
used, the narrowing of remote types requires the use of javax.rmi.PortableRemoteObject.narrow
rather than Java language casts.

• Remote calls may involve error cases due to communication, resource usage on other servers, etc.,
which are not expected in local calls. When the Enterprise Beans 2.1 and earlier remote home and
remote component interfaces are used, the client has to explicitly program handlers for handling
the java.rmi.RemoteException.

3.2. Local, Remote, and Web Service Client Views

Final Jakarta® Enterprise Beans, Core Features 21

• Because of the overhead of the remote programming model, it is typically used for relatively
coarse-grained component access.

• Local calls involve pass-by-reference. The client and the bean may be programmed to rely on pass-
by-reference semantics. For example, a client may have a large document which it wants to pass on
to the bean to modify, and the bean further passes on. In the local programming model the sharing
of state is possible. On the other hand, when the bean wants to return a data structure to the client
but the bean does not want the client to modify it, the bean explicitly copies the data structure
before returning it, while in the remote programming model the bean does not copy the data
structure because it assumes that the system will do the copy.

• Because local calls involve pass-by-reference, the local client and the enterprise bean providing the
local client view are collocated.

• The collocation entailed by the local programming model means that the enterprise bean cannot be
deployed on a node different from that of its client—thus restricting the distribution of
components.

• Because the local programming model provides more lightweight access to a component, it better
supports more fine-grained component access.

Note that although collocation of the remote client and the enterprise bean may allow the container
to reduce the overhead of calls through a remote business interface or remote component interface,
such calls are still likely to be less efficient than calls made using a local interface because any
optimizations based on collocation must be done transparently.

The choice between the local and the remote programming model is a design decision that the Bean
Provider makes when developing the enterprise bean.

While it is possible to provide both a remote client view and a local client view for an enterprise bean,
more typically only one or the other will be provided.

3.2.4. Web Service Clients

Stateless session beans and singleton session beans may have web service clients.

A web service client accesses a session bean through the web service client view. The web service
client view is described by the WSDL document for the web service that the bean implements. WSDL is
an XML format for describing a web service as a set of endpoints operating on messages. The abstract
description of the service is bound to an XML based protocol (SOAP [11]) and underlying transport
(HTTP or HTTPS) by means of which the messages are conveyed between client and server. (See
references [12], [6], [5], [4]).

The web service methods of a session bean provide the basis of the web service client view of the bean
that is exported through WSDL. See reference [6] for a description of how Java language metadata
annotations may be used to specify a session bean’s web services client view.

3.2. Local, Remote, and Web Service Client Views

22 Jakarta® Enterprise Beans, Core Features Final

A bean’s web service client view may be initially defined by a WSDL document and then mapped to a
web service endpoint that conforms to this, or an existing bean may be adapted to provide a web
service client view. Reference [5] describes various design-time scenarios that may be used for
Enterprise Beans web service endpoints.

Compatibility Note: Enterprise Beans 2.1 required the Bean Provider to define a web service endpoint
interface for a stateless session bean when he or she wished to expose the functionality of the bean as a
web service endpoint through WSDL. This requirement to define the web service endpoint interface is
removed in Enterprise Beans 3.0 and later. See [6].

The web service client view of an enterprise bean is location independent and remotable.

Web service clients may be Java clients and/or clients not written in the Java programming language. A
web service client that is a Java client accesses the web service by means of the Jakarta XML Web
Services client APIs. Access through web service clients occurs through SOAP 1.1, SOAP 1.2 or plain
XML over HTTP(S).

While it is possible to provide a web service client view in addition to other client views for an
enterprise bean, more typically only one will be provided. There is no prohibition against using the
same interface as both a remote business interface and a web service endpoint interface. In that case it
is the Bean Provider’s responsibility to ensure that the interface conforms to the type requirements of
each client view through which it is exposed.

3.3. Enterprise Beans Container
An Enterprise Beans container (container for short) is a system that functions as the "container" for
enterprise beans. Multiple enterprise beans can be deployed in the same container. The container is
responsible for making the business interfaces and/or home interfaces of its deployed enterprise beans
available to the client through dependency injection and/or through lookup in the JNDI namespace.

3.4. Client View of Session Beans Written to the
Enterprise Beans 3.x Simplified API
The Enterprise Beans 3.x local or remote client of a session bean written to the Enterprise Beans 3.x
API accesses a session bean through its business interface. The business interface of an Enterprise
Beans 3.x session bean is an ordinary Java interface, regardless of whether local or remote access is
provided for the bean. In particular, the Enterprise Beans 3.x session bean business interface is not one
of the interface types required by earlier versions of the Enterprise Beans specification (i.e., EJBObject
or EJBLocalObject interface). A local client may also access a session bean through a no-interface view
that exposes all non-static public methods of the bean class.

3.4.1. Obtaining a Session Bean’s Business Interface

A client can obtain a session bean’s business interface through dependency injection or lookup in the

3.3. Enterprise Beans Container

Final Jakarta® Enterprise Beans, Core Features 23

JNDI namespace.

For example, the business interface Cart for the CartBean session bean may be obtained using
dependency injection as follows:

@EJB
Cart cart;

The Cart business interface could also be looked up using JNDI as shown in the following code segment
using the lookup method provided by the EJBContext interface. In this example, a reference to the client
bean’s SessionContext object is obtained through dependency injection:

@Resource
SessionContext ctx;
...
Cart cart = (Cart)ctx.lookup("cart");

In both cases, the syntax used in obtaining the reference to the Cart business interface is independent
of whether the business interface is local or remote. In the case of remote access, the actual location of
a referenced enterprise bean and Enterprise Beans container are, in general, transparent to the client
using the remote business interface of the bean.

3.4.2. Obtaining a Reference to the No-interface View

A client can obtain a reference to a session bean’s no-interface view through dependency injection or
lookup in the JNDI namespace.

For example, the no-interface view of the CartBean session bean with bean class com.acme.CartBean may
be obtained using dependency injection as follows:

@EJB
CartBean cart;

The CartBean no-interface view could also be looked up via JNDI as shown in the following code
segment using the lookup method provided by the EJBContext interface. In this example, a reference to
the client bean’s SessionContext object is obtained through dependency injection:

@Resource
SessionContext ctx;
...
CartBean cart = (CartBean)ctx.lookup("cart");

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API

24 Jakarta® Enterprise Beans, Core Features Final

Despite the fact that the client reference for the no-interface view has the type of the bean class, the
client never directly uses the new operator to acquire the reference.

3.4.3. Session Bean’s Business Interface

The session bean’s business interface is an ordinary Java interface. It contains the business methods of
the session bean.

A reference to a session bean’s business interface may be passed as a parameter or return value of a
business interface method. If the reference is to a session bean’s local business interface, the reference
may only be passed as a parameter or return value of a local business interface method or a no-
interface view method.

The business interface of a stateful session bean typically contains a method to initialize the state of
the session object and a method to indicate that the client has finished using the session object and that
it can be removed. See Session Bean Component Contract.

It is invalid to reference a session object that does not exist. If a stateful session bean has been
removed, attempted invocations on the stateful session bean business interface result in the
jakarta.ejb.NoSuchEJBException.[3] If a singleton session bean did not successfully initialize, attempted
invocations on the singleton session bean business interface result in the
jakarta.ejb.NoSuchEJBException.

The container provides an implementation of a session bean’s business interface such that when the
client invokes a method on the instance of the business interface, the business method on the session
bean instance and any interceptor methods are invoked as needed.

The container makes the session bean’s business interface available to the Enterprise Beans 3.x client
through dependency injection and through lookup in the JNDI namespace. Enterprise Bean References
describes in further detail how clients can obtain references to Enterprise Beans business interfaces.

3.4.4. Session Bean’s No-Interface View

A session bean’s no-interface view is a variation of the local view that exposes the non-static public
methods of the bean class without the use of a separate business interface.

A reference to the no-interface view may be passed as a parameter or return value of any local
business interface or no-interface view method.

The container provides an implementation of a reference to a no-interface view such that when the
client invokes a method on the reference, the business method on the session bean instance and any
interceptor methods are invoked as needed. As with the session bean remote and local views, a client
acquires a no-interface view reference via lookup or injection only. A client does not directly
instantiate (use the new operator on) the bean class to acquire a reference to the no-interface view.

Only public methods of the bean class and of any superclasses except java.lang.Object may be invoked
through the no-interface view. Attempted invocations of methods with any other access modifiers via

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API

Final Jakarta® Enterprise Beans, Core Features 25

the no-interface view reference must result in the jakarta.ejb.EJBException.

When interacting with a reference to the no-interface view, the client must not make any assumptions
regarding the internal implementation of the reference, such as any instance-specific state that may be
present in the reference. Although the reference object is type-compatible with the corresponding
bean class type, there is no prescribed relationship between the internal implementation of the
reference and the implementation of the bean instance.

The developer of an enterprise bean that exposes a no-interface view must not make any assumptions
about the number of times the bean class no-arg constructor will be called. For example, it is possible
that the acquisition of a client reference to the no-interface view will result in the invocation of the
bean class constructor. It is recommended that the Bean Provider place component initialization logic
in a PostConstruct method instead of the bean class no-arg constructor.

It is invalid to reference a session object that does not exist. If a stateful session bean has been
removed, attempted invocations on the no-interface view reference must result in the
jakarta.ejb.NoSuchEJBException. If a singleton session bean did not successfully initialize, attempted
invocations on the singleton session bean’s no-interface view reference result in the
jakarta.ejb.NoSuchEJBException.

3.4.5. Client View of Session Object’s Life Cycle

From the point of view of the client, a session object exists once the client has obtained a reference to
its business interface—whether through dependency injection or from lookup of the business interface
in JNDI.

A client that has a reference to a session object’s business interface can then invoke business methods
on the interface and/or pass the reference as a parameter or return value of a business interface
method.[4]

A client may remove a stateful session bean by invoking a method of its business interface designated
as a Remove method.

The lifecycle of a stateless session bean does not require that it be removed by the client. Removal of a
stateless session bean instance is performed by the container, transparently to the client.

The lifecycle of a singleton session bean does not require that it be removed by the client. Removal of a
singleton session bean instance is performed by the container, transparently to the client.

The contracts for session bean lifecycle are described in Session Bean Component Contract.

3.4.6. Example of Obtaining and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API

26 Jakarta® Enterprise Beans, Core Features Final

container

client
Cart CartBean

Figure 1. Session Bean Example Objects

A client obtains a reference to a Cart session object, which provides a shopping service, by means of
dependency injection or using JNDI lookup. The client then uses this session object to fill the cart with
items and to purchase its contents. Cart is a stateful session.

In this example, the client obtains a reference to the Cart’s business interface through dependency
injection. The client then uses the business interface to initialize the session object and add a few items
to it. The startShopping method is a business method that is provided for the initialization of the
session object.

@EJB
Cart cart;
...
cart.startShopping();
cart.addItem(66);
cart.addItem(22);

Finally the client purchases the contents of the shopping cart, and finishes the shopping activity.[5]

cart.purchase();
cart.finishShopping();

3.4.7. Session Object Identity

A client can test two Enterprise Beans 3.x remote or local view references for identity by means of the
Object.equals and Object.hashCode methods.

3.4.7.1. Stateful Session Beans

A stateful session object has a unique identity that is assigned by the container at the time the object is
created. A client of the stateful session bean business interface can determine if two business interface

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API

Final Jakarta® Enterprise Beans, Core Features 27

or no-interface view references refer to the same session object by use of the equals method.

For example,

@EJB
Cart cart1;

@EJB
Cart cart2;
...
if (cart1.equals(cart1)) { // this test must return true
 ...
}
...
if (cart1.equals(cart2)) { // this test must return false
 ...
}

All stateful session bean references to the same business interface for the same stateful session bean
instance will be equal. All references to the no-interface view of the same stateful session bean
instance will be equal. Stateful session bean references to different interface types or between an
interface type and a no-interface view or to different stateful session bean instances will not have the
same identity.

3.4.7.2. Stateless Session Beans

All business object references of the same interface type for the same stateless session bean have the
same object identity, which is assigned by the container. All references to the no-interface view of the
same stateless session bean have the same object identity.

For example,

@EJB
Cart cart1;

@EJB
Cart cart2;
...
if (cart1.equals(cart1)) { // this test must return true
 ...
}
...
if (cart1.equals(cart2)) { // this test must also return true
 ...
}

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API

28 Jakarta® Enterprise Beans, Core Features Final

The equals method always returns true when used to compare references to the same business
interface type of the same stateless session bean. The equals method always returns true when used to
compare references to the no-interface view of the same stateless session bean. Stateless session bean
references to either different business interface types or between an interface type and a no-interface
view or to different session beans will not be equal.

3.4.7.3. Singleton Session Beans

All business object references of the same interface type for the same singleton session bean have the
same object identity, which is assigned by the container. All references to the no-interface view of the
same singleton session bean have the same object identity.

For example,

@EJB
Shared shared1;

@EJB
Shared shared2;
...
if (shared1.equals(shared1)) { // this test must return true
 ...
}
...
if (shared1.equals(shared2)) { // this test must also return true
 ...
}

The equals method always returns true when used to compare references to the same business
interface type of the same singleton session bean. The equals method always returns true when used to
compare references to the no-interface view of the same singleton session bean. Session bean
references to either different business interface types or between an interface type and a no-interface
view or to different session beans will not be equal.

3.4.8. Asynchronous Invocations

By default, session bean invocations through the remote, local, and no-interface views are
synchronous. The client blocks for the duration of the invocation and is returned control only after all
invocation processing has completed. Clients can achieve asynchronous invocation behavior by
invoking session bean methods that have been designed to support asynchrony.

When a client invokes an asynchronous method, the container returns control to the client
immediately and continues processing the invocation on a separate thread of execution.

The client should expect to receive a system exception (in the form of the jakarta.ejb.EJBException) on
the client thread if the container has problems allocating the internal resources required to support

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API

Final Jakarta® Enterprise Beans, Core Features 29

the asynchronous method.[6] If a system exception is received on the client thread, the client can expect
that the container will not be able to dispatch the asynchronous method. The client may wish to retry
the asynchronous method at a later time.

If no system exception is received, the client can expect that the container will make an attempt to
dispatch the asynchronous method. An exception resulting from the asynchronous method execution
(e.g. an authorization failure, transaction commit failure, application exception, etc.) will be available
via the Future<V> object.

3.4.8.1. Return Values

Asynchronous methods have a return type of void or Future<V>, where V represents the result value of
the asynchronous invocation.

For Future<V>, the object returned from the client invocation is a container provided object. This object
allows the client to retrieve the invocation result value, discover any invocation exception, or attempt
to cancel the asynchronous invocation.

All methods of the java.util.concurrent.Future interface are supported. Unless otherwise noted, the
behavior matches that described in its javadoc entry [13].

Future.cancel(boolean mayInterruptIfRunning)

If a client calls cancel on its Future object, the container will attempt to cancel the associated
asynchronous invocation only if that invocation has not already been dispatched. There is no
guarantee that an asynchronous invocation can be cancelled, regardless of how quickly cancel is called
after the client receives its Future object. If the asynchronous invocation cannot be cancelled, the
method must return false. If the asynchronous invocation is successfully cancelled, the method must
return true.

The mayInterruptIfRunning flag controls whether, in the case that the asynchronous invocation can not
be cancelled, the target enterprise bean should have visibility to the client’s cancel attempt. If the
mayInterruptIfRunning flag is set to true, then subsequent calls to the SessionContext.wasCancelCalled
method from within the associated dispatched asynchronous invocation must return true. If the
mayInterruptIfRunning flag is set to false, then subsequent calls to the SessionContext.wasCancelCalled
method from within the associated dispatched asynchronous invocation must return false.

Note that all the client Future cancel semantics (isCancelled, CancellationException, etc.) depend only
on the result of Future.cancel. If the dispatched asynchronous method does decide to short circuit its
processing as a result of checking SessionContext, it is the responsibility of the Bean Provider to decide
how to convey that information to the client. Typically, that is done through a special return value or
exception delivered via Future.get().

Future.get

The client calls one of the two Future.get methods in order to retrieve the result value or resulting
exception from the associated asynchronous invocation. This specification recommends that unless the

3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API

30 Jakarta® Enterprise Beans, Core Features Final

client successfully cancels the asynchronous invocation it should call get on every Future object it
receives. If a call to get successfully returns a result value or throws an ExecutionException, all
subsequent calls to get on the same Future object must result in that same behavior.

The Enterprise Beans Container Provider is permitted to define a timeout value that governs the
maximum amount of time the container maintains result values for completed asynchronous
invocations. The configuration of such a timeout is beyond the scope of this specification.

3.4.9. Concurrent Access to Session Bean References

It is permissible to acquire a session bean reference and attempt to invoke the same reference object
concurrently from multiple threads. However, the resulting client behavior on each thread depends on
the concurrency semantics of the target bean. See Serializing Session Bean Methods and Singleton
Session Bean Concurrency for details of the concurrency behavior for session beans.

3.5. The Web Service Client View of a Stateless or
Singleton Session Bean
From the perspective of the client, the existence of the stateless session bean or singleton session bean
is completely hidden behind the web service endpoint that the bean implements.

The web service client’s access to the web service functionality provided by a session bean occurs
through a web service endpoint. In the case of Java clients, this endpoint is accessed as a Jakarta XML
Web Services service endpoint using the client view APIs, as described in [4].

The following diagram illustrates the view that is provided to Jakarta XML Web Services clients of a
stateless session bean through the client view APIs.

3.5. The Web Service Client View of a Stateless or Singleton Session Bean

Final Jakarta® Enterprise Beans, Core Features 31

Client

Service class

Web service endpoint

Container

Stateless session
bean

Stateless
session bean
instances

Figure 2. Web Service Client View of Stateless Session Beans Deployed in a Container

3.5.1. Jakarta XML Web Services Clients

The Jakarta XML Web Services client obtains a reference to the service instance of the
jakarta.xml.ws.Service class through dependency injection or using JNDI. The service class can be a
generic jakarta.xml.ws.Service class or a generated service class which extends the
jakarta.xml.ws.Service class. The service instance is then used to obtain a port object for the web
service endpoint. The mechanisms and APIs for client web service access are described in the Jakarta
XML Web Services [4] specification and in the Jakarta Enterprise Web Services [5] specification.

The following example illustrates how a Jakarta XML Web Services client obtains a reference to a web
service endpoint, obtains a port object for the web service endpoint, and invokes a method on that
endpoint.

@WebServiceRef
public StockQuoteService stockQuoteService;
...
StockQuoteProvider sqp = stockQuoteService.getStockQuoteProviderPort();
float quotePrice = sqp.getLastTradePrice("ACME");
...

The use of service references and the WebServiceRef annotation are described in further detail in [4].

3.5. The Web Service Client View of a Stateless or Singleton Session Bean

32 Jakarta® Enterprise Beans, Core Features Final

3.6. Remote and Local Client View of Session Beans
Written to the Enterprise Beans 2.1 Client View API
The remainder of this chapter describes the session bean client view defined by the Enterprise Beans
2.1 and earlier specifications. Support for the definition and use of these earlier client interfaces is
required to be provided by implementations of this specification. The Enterprise Beans 2.1 remote and
local client views are not supported for singleton session beans.

3.6.1. Locating a Session Bean’s Home Interface

The Enterprise Beans 2.1 and earlier specifications required that the client first obtain a reference to a
session bean’s home interface, and then use the home interface to obtain a reference to the bean’s
component interface. This earlier programming model continues to be supported by this specification.
Both dependency injection and use of the EJBContext lookup method may be used as an alternative to
the JNDI APIs to obtain a reference to the home interface.

For example, an Enterprise Beans 3.x client, com.acme.example.MySessionBean, might obtain a reference
to a bean’s home interface as follows:

@EJB
CartHome cartHome;

This home interface could be looked up in JNDI using the EJBContext lookup method as shown in the
following code segment:

@Resource
SessionContext ctx;
...
CartHome cartHome =
 (CartHome)ctx.lookup("com.acme.example.MySessionBean/cartHome");

When the EJBContext lookup method is used to look up a home interface, the use of
javax.rmi.PortableRemoteObject.narrow is not required.

The following code segments illustrate how the home interface is obtained when the JNDI APIs are
used directly, as was required in the Enterprise Beans 2.1 programming model. For example, the
remote home interface for the Cart session bean can be located using the following code segment:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
 initialContext.lookup("java:comp/env/ejb/cart"), CartHome.class);

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

Final Jakarta® Enterprise Beans, Core Features 33

If the Cart session bean provides a local client view instead of a remote client view and CartHome is a
local home interface, this lookup might be as follows:

Context initialContext = new InitialContext();
CartHome cartHome =
 (CartHome)initialContext.lookup("java:comp/env/ejb/cart");

3.6.2. Session Bean’s Remote Home Interface

This section is specific to session beans that provide a remote client view using the remote component
interface and remote home interface.

This was the only way of providing a remote client view in the Enterprise Beans 2.1 and earlier
releases. The remote client view provided by the business interface under the Enterprise Beans 3.x
API, as described in Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API,
is now to be preferred.

The container provides the implementation of the remote home interface for each session bean that
defines a remote home interface that is deployed in the container. The object that implements a session
bean’s remote home interface is called a session EJBHome object. The container makes the session
bean’s remote home interface available to the client through dependency injection or through lookup
in the JNDI namespace.

The remote home interface allows a client to do the following:

• Create a new session object.

• Remove a session object.

• Get the jakarta.ejb.EJBMetaData interface for the session bean. The jakarta.ejb.EJBMetaData

interface is intended to allow application assembly tools to discover information about the session
bean, and to allow loose client/server binding and client-side scripting.

• Obtain a handle for the remote home interface. The home handle can be serialized and written to
stable storage. Later, possibly in a different JVM, the handle can be deserialized from stable storage
and used to obtain back a reference of the remote home interface.

The life cycle of the distributed object implementing the remote home interface (the EJBHome object)
or the local Java object implementing the local home interface (the EJBLocalHome object) is container-
specific. A client application should be able to obtain a home interface, and then use it multiple times,
during the client application’s lifetime.

A client can pass a remote home object reference to another application. The receiving application can
use the home interface in the same way that it would use a remote home object reference obtained via
JNDI.

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

34 Jakarta® Enterprise Beans, Core Features Final

3.6.2.1. Creating a Session Object

A home interface defines one or more create<METHOD> methods, one for each way to create a session
object. The arguments of the create methods are typically used to initialize the state of the created
session object.

The return type of a create<METHOD> method on the remote home interface is the session bean’s remote
component interface.

The following example illustrates a remote home interface that defines two create<METHOD> methods:

public interface CartHome extends jakarta.ejb.EJBHome {
 Cart create(String customerName, String account)
 throws RemoteException, BadAccountException, CreateException;
 Cart createLargeCart(String customerName, String account)
 throws RemoteException, BadAccountException, CreateException;
}

The following example illustrates how a client creates a new session object using a create<METHOD>
method of the CartHome interface:

cartHome.create("John", "7506");

3.6.2.2. Removing a Session Object

A remote client may remove a session object using the remove() method of the jakarta.ejb.EJBObject
interface, or the remove(Handle handle) method of the jakarta.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
jakarta.ejb.EJBHome.remove(Object primaryKey) method on a session results in a
jakarta.ejb.RemoveException.

3.6.3. Session Bean’s Local Home Interface

This section is specific to session beans that provide a local client view using the local component
interface and local home interface.

This was the only way of providing a local client view in the Enterprise Beans 2.1 and earlier
releases. The local client view provided by the business interface under the Enterprise Beans 3.x
API, as described in Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API,
is now to be preferred.

The container provides the implementation of the local home interface for each session bean that

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

Final Jakarta® Enterprise Beans, Core Features 35

defines a local home interface that is deployed in the container. The object that implements a session
bean’s local home interface is called a session EJBLocalHome object. The container makes the session
bean’s local home interface available to the client through JNDI.

The local home interface allows a local client to do the following:

• Create a new session object.

• Remove a session object.

A client can pass a local home object reference to another application through its local component
interface. A local home object reference cannot be passed as an argument or result of a method on an
enterprise bean’s remote home or remote component interface.

3.6.3.1. Creating a Session Object

A local home interface defines one or more create<METHOD> methods, one for each way to create a
session object. The arguments of the create methods are typically used to initialize the state of the
created session object.

The return type of a create<METHOD> method on the local home interface is the session bean’s local
component interface.

The following example illustrates a local home interface that defines two create<METHOD> methods:

public interface CartHome extends jakarta.ejb.EJBLocalHome {
 Cart create(String customerName, String account)
 throws BadAccountException, CreateException;
 Cart createLargeCart(String customerName, String account)
 throws BadAccountException, CreateException;
}

The following example illustrates how a client creates a new session object using a create<METHOD>
method of the CartHome interface:

cartHome.create("John", "7506");

3.6.3.2. Removing a Session Object

A local client may remove a session object using the remove() method of the jakarta.ejb.EJBLocalObject
interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
jakarta.ejb.EJBLocalHome.remove(Object primaryKey) method on a session results in a
jakarta.ejb.RemoveException.

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

36 Jakarta® Enterprise Beans, Core Features Final

3.6.4. EJBObject and EJBLocalObject

A remote or local client that uses the Enterprise Beans 2.1 client view APIs uses the session bean’s
component interface to access a session bean instance. The class that implements the session bean’s
component interface is provided by the container. Instances of a session bean’s remote component
interface are called session EJBObjects. Instances of a session bean’s local component interface are
called session EJBLocalObjects.

A session EJBObject supports:

• The business logic methods of the object. The session EJBObject delegates invocation of a business
method to the session bean instance.

• The methods of the jakarta.ejb.EJBObject interface. These methods allow the client to:

◦ Get the session object’s remote home interface.

◦ Get the session object’s handle.

◦ Test if the session object is identical with another session object.

◦ Remove the session object.

A session EJBLocalObject supports:

• The business logic methods of the object. The session EJBLocalObject delegates invocation of a
business method to the session bean instance.

• The methods of the jakarta.ejb.EJBLocalObject interface. These methods allow the client to:

◦ Get the session object’s local home interface.

◦ Test if the session object is identical with another session object.

◦ Remove the session object.

The implementation of the methods defined in the jakarta.ejb.EJBObject and
jakarta.ejb.EJBLocalObject interfaces is provided by the container. They are not delegated to the
instances of the session bean class.

3.6.5. Client view of Session Object’s Life Cycle

From the point of view of a local or remote client using the Enterprise Beans 2.1 and earlier client view
API, the life cycle of a session object is illustrated below.

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

Final Jakarta® Enterprise Beans, Core Features 37

does not exist
and

not referenced

home.create<METHOD>(...)

exists
and

referenced

client's method on reference

object.remove(),
home.remove(...),

system exception in bean,
bean timeout

or
container crash

does not exist
and

referenced

client's method on reference
generates NoSuchObjectException or

NoSuchLocalObjectException

release reference

release reference

exists
and

not referenced

handle.getEJBObject()

container crash
or bean timeout

Figure 3. Life Cycle of a Session Object.

A session object does not exist until it is created. When a client creates a session object, the client has a
reference to the newly created session object’s component interface.

3.6.5.1. References to Session Object Remote Component Interfaces

A client that has a reference to a session object’s remote component interface can then do any of the
following:

• Invoke business methods defined in the session object’s remote component interface.

• Get a reference to the session object’s remote home interface.

• Get a handle for the session object.

• Pass the reference as a parameter or return value within the scope of the client.

• Remove the session object. A container may also remove the session object automatically when the
session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted remote invocations on a stateful
session object that does not exist result in a java.rmi.NoSuchObjectException.[7]

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

38 Jakarta® Enterprise Beans, Core Features Final

3.6.5.2. References to Session Object Local Component Interfaces

A client that has a reference to a session object’s local component interface can then do any of the
following:

• Invoke business methods defined in the session object’s local component interface.

• Get a reference to the session object’s local home interface.

• Pass the reference as a parameter or return value of a local component interface method.

• Remove the session object. A container may also remove the session object automatically when the
session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted invocations on a stateful session
object that does not exist result in jakarta.ejb.NoSuchObjectLocalException.[8]

A client can pass a local object reference or local home object reference to another application through
its local component interface. A local object reference or local home object reference cannot be passed
as an argument or result of a method on an enterprise bean’s remote home or remote component
interface.

3.6.6. Creating and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

container

client

Cart

CartBean

CartHome

Figure 4. Session Bean Example Objects

A client creates a remote Cart session object, which provides a shopping service, using a create<METHOD>
method of the Cart’s remote home interface. The client then uses this session object to fill the cart with
items and to purchase its contents.

Suppose that the end-user wishes to start the shopping session, suspend the shopping session
temporarily for a day or two, and later complete the session. The client might implement this feature

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

Final Jakarta® Enterprise Beans, Core Features 39

by getting the session object’s handle, saving the serialized handle in persistent storage, and using it
later to reestablish access to the original Cart.

For the following example, we start by looking up the Cart’s remote home interface in JNDI. We then
use the remote home interface to create a Cart session object and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
 initialContext.lookup(...), CartHome.class);
Cart cart = cartHome.createLargeCart(...);
cart.addItem(66);
cart.addItem(22);

Next we decide to complete this shopping session at a later time so we serialize a handle to this cart
session object and store it in a file:

Handle cartHandle = cart.getHandle();
//serialize cartHandle, store in a file...

Finally we deserialize the handle at a later time, re-create the reference to the cart session object, and
purchase the contents of the shopping cart:

Handle cartHandle = ...; // deserialize from a file...
Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(
 cartHandle.getEJBObject(), Cart.class);
cart.purchase();
cart.remove();

3.6.7. Object Identity

Session objects are intended to be private resources used only by the client that created them. For this
reason, session objects, from the client’s perspective, appear anonymous. Session objects do not expose
their identity as a primary key, on the opposite, they hide their identity. As a result, the
EJBObject.getPrimaryKey() method results in a java.rmi.RemoteException and the
EJBLocalObject.getPrimaryKey() method results in a jakarta.ejb.EJBException, and the
EJBHome.remove(Object primaryKey) and the EJBLocalHome.remove(Object primaryKey) methods result in a
jakarta.ejb.RemoveException if called on a session bean. If the EJBMetaData.getPrimaryKeyClass()
method is invoked on a EJBMetaData object for a session bean, the method throws the
java.lang.RuntimeException.Since all session objects hide their identity, there is no need to provide a
finder for them. The home interface of a session bean must not define any finder methods.

A session object handle can be held beyond the life of a client process by serializing the handle to
persistent storage. When the handle is later deserialized, the session object it returns will work as long
as the session object still exists on the server. (An earlier timeout or server crash may have destroyed

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

40 Jakarta® Enterprise Beans, Core Features Final

the session object.) A handle is not a capability, in the security sense, that would automatically grant its
holder the right to invoke methods on the object. When a reference to a session object is obtained from
a handle, and then a method on the session object is invoked, the container performs the usual access
checks based on the caller’s principal.

3.6.7.1. Stateful Session Beans

A stateful session object has a unique identity that is assigned by the container at create time.

A remote client can determine if two remote object references refer to the same session object by
invoking the isIdentical(EJBObject otherEJBObject) method on one of the references. A local client can
determine if two local object references refer to the same session object by invoking the
isIdentical(EJBLocalObject otherEJBLocalObject) method.

The following example illustrates the use of the isIdentical method for a stateful session object.

FooHome fooHome = ...; // obtain home of a stateful session bean
Foo foo1 = fooHome.create(...);
Foo foo2 = fooHome.create(...);

if (foo1.isIdentical(foo1)) { // this test must return true
 ...
}

if (foo1.isIdentical(foo2)) { // this test must return false
 ...
}

3.6.7.2. Stateless Session Beans

All session objects of the same stateless session bean within the same home have the same object
identity, which is assigned by the container. If a stateless session bean is deployed multiple times (each
deployment results in the creation of a distinct home), session objects from different homes will have a
different identity.

The isIdentical(EJBObject otherEJBObject) and isIdentical(EJBLocalObject otherEJBLocalObject)

methods always returns true when used to compare object references of two session objects of the
same stateless session bean.

The following example illustrates the use of the isIdentical method for a stateless session object.

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

Final Jakarta® Enterprise Beans, Core Features 41

FooHome fooHome = ...; // obtain home of a stateless session bean
Foo foo1 = fooHome.create();
Foo foo2 = fooHome.create();

if (foo1.isIdentical(foo1)) { // this test returns true
 ...
}

if (foo1.isIdentical(foo2)) { // this test returns true
 ...
}

3.6.7.3. getPrimaryKey()

The object identifier of a session object is, in general, opaque to the client. The result of getPrimaryKey()
on a session EJBObject reference results in java.rmi.RemoteException. The result of getPrimaryKey() on a
session EJBLocalObject reference results in jakarta.ejb.EJBException.

3.6.8. Type Narrowing

A client program that is intended to be interoperable with all compliant Enterprise Beans container
implementations must use the javax.rmi.PortableRemoteObject.narrow method to perform type-
narrowing of the client-side representations of the remote home and remote component interfaces.[9]

Note: Programs using the cast operator for narrowing the remote component interface and remote home
interface are likely to fail if the container implementation uses RMI-IIOP as the underlying
communication transport.

[2] More literally, references are passed by value in the JVM: an argument variable of primitive type holds a value of
that primitive type; an argument variable of a reference type hold a reference to the object. See [10].
[3] This may not apply to stateless session beans; see Stateless Session Beans.
[4] Note that the Enterprise Beans 3.x session bean business interface is not an EJBObject. It is not valid to pass a
reference to the remote business interface through a bean’s remote component interface.
[5] It is part of the logic of an application designed using stateful session beans to designate a method that causes the
removal of the stateful session (and thus allows for the reclamation of resources used by the session bean). This
example assumes that the finishShopping method is such a Remove method. See Stateful Session Beans for further
discussion.
[6] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
received instead.
[7] This may not apply to stateless session beans; see Stateless Session Beans.
[8] This may not apply to stateless session beans; see Stateless Session Beans.
[9] Use of javax.rmi.PortableRemoteObject.narrow is not needed when the EJBContext lookup method is used to look up
the remote home interface.

3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API

42 Jakarta® Enterprise Beans, Core Features Final

Chapter 4. Session Bean Component Contract
This chapter specifies the contract between a session bean and its container. It defines the life cycle of
the session bean instances.

This chapter defines the developer’s view of session bean state management and the container’s
responsibilities for managing session bean state.

4.1. Overview
A session bean instance is an instance of the session bean class. It holds the session object’s state.

A session bean instance is an extension of the client that creates it:

• In the case of a stateful session bean, its fields contain conversational state on behalf of the
session object’s client. This state describes the conversation represented by a specific client/session
object pair.

• It typically reads and updates data in a database on behalf of the client.

• In the case of a stateful session bean, its lifetime is controlled by the client.

A container may also terminate a session bean instance’s life after a Deployer-specified timeout or
as a result of the failure of the server on which the bean instance is running. For this reason, a
client should be prepared to recreate a new session object if it loses the one it is using.

Typically, a session object’s conversational state is not written to the database. A session Bean Provider
simply stores it in the session bean instance’s fields and assumes its value is retained for the lifetime of
the instance. A developer may use an extended persistence context to store a stateful session bean’s
persistent conversational state. See the document "Jakarta Persistence" specification [3].

A session bean that does not make use of Jakarta Persistence must explicitly manage cached database
data. A session bean instance must write any cached database updates prior to a transaction
completion, and it must refresh its copy of any potentially stale database data at the beginning of the
next transaction. A session bean must also refresh any java.sql.Statement objects before they are used
in a new transaction context. Use of Jakarta Persistence provides a session bean with automatic
management of database data, including the automatic flushing of cached database updates upon
transaction commit. See [3].

The container manages the life cycle of the session bean instances. It notifies the instances when bean
action may be necessary, and it provides a full range of services to ensure that the session bean
implementation is scalable and can support a large number of clients.

A session bean may be invoked either synchronously or asynchronously.

4.1. Overview

Final Jakarta® Enterprise Beans, Core Features 43

A session bean may be either:

• stateless—the session bean instances contain no conversational state between methods; any
instance can be used for any client.

• stateful—the session bean instances contain conversational state which must be retained across
methods and transactions.

• singleton—a single session bean instance is shared between clients and supports concurrent access.

4.2. Conversational State of a Stateful Session Bean
The conversational state of a stateful session object is defined as the session bean instance’s field
values, its associated interceptors and their instance field values, plus the transitive closure of the
objects from these instances’ fields reached by following Java object references.

To efficiently manage the size of its working set, a session bean container may need to temporarily
transfer the state of an idle stateful session bean instance to some form of secondary storage. The
transfer from the working set to secondary storage is called instance passivation. The transfer back is
called activation.

In advanced cases, a session object’s conversational state may contain open resources, such as open
sockets and open database cursors. A container cannot retain such open resources when a session
bean instance is passivated. A developer of a stateful session bean must close and open the resources
in the PrePassivate and PostActivate lifecycle callback interceptor methods.[10]

A container may only passivate a stateful session bean instance when the instance is not in a
transaction.

A container must not passivate a stateful session bean that is designated as not passivation capable.
See Disabling Passivation of Stateful Session Beans on how to disable passivation of stateful session
beans.

A container must not passivate a stateful session bean with an extended persistence context unless the
following conditions are met:[11]

• All the entities in the persistence context are serializable.

• The EntityManager is serializable.

A stateless session bean is never passivated.

A singleton session bean is never passivated.

4.2.1. Instance Passivation and Conversational State

The Bean Provider is required to ensure that the PrePassivate method leaves the instance fields and
the fields of its associated interceptors ready to be serialized by the container. The objects that are

4.2. Conversational State of a Stateful Session Bean

44 Jakarta® Enterprise Beans, Core Features Final

assigned to the instance’s non-transient fields and the non-transient fields of its interceptors after the
PrePassivate method completes must be one of the following.

• A serializable object.[12]

• A null.

• A reference to an enterprise bean’s local or remote business interface.

• A reference to an enterprise bean’s no-interface view.

• A reference to an enterprise bean’s remote component interface, even if the stub class is not
serializable.

• A reference to an enterprise bean’s remote home interface, even if the stub class is not serializable.

• A reference to an entity bean’s [12] local component interface, even if it is not serializable.

• A reference to an entity bean’s [13] local home interface, even if it is not serializable.

• A reference to the SessionContext object, even if it is not serializable.

• A reference to the environment naming context (that is, the java:comp/env JNDI context) or any of
its subcontexts.

• A reference to the UserTransaction interface.

• A reference to a resource manager connection factory.[14]

• A reference to a container-managed EntityManager object, even if it is not serializable.

• A reference to an EntityManagerFactory object obtained via injection or JNDI lookup, even if it is not
serializable.

• A reference to a jakarta.ejb.Timer object.

• An object that is not directly serializable, but becomes serializable by replacing the references to an
enterprise bean’s business interface, an enterprise bean’s home and component interfaces, the
references to the SessionContext object, the references to the java:comp/env JNDI context and its
subcontexts, the references to the UserTransaction interface, and the references to the
EntityManager and/or EntityManagerFactory by serializable objects during the object’s serialization.

This means, for example, that the Bean Provider must close all JDBC™ connections in the PrePassivate
method and assign the instance’s fields storing the connections to null.

The last bulleted item covers cases such as storing Collections of component interfaces in the
conversational state.

The Bean Provider must assume that the content of transient fields may be lost between the
PrePassivate and PostActivate notifications. Therefore, the Bean Provider should not store in a
transient field a reference to any of the following objects: SessionContext object; environment JNDI
naming context and any its subcontexts; business interfaces; home and component interfaces;
EntityManager interface; EntityManagerFactory interface; UserTransaction interface.

The restrictions on the use of transient fields ensure that containers can use Java Serialization during

4.2. Conversational State of a Stateful Session Bean

Final Jakarta® Enterprise Beans, Core Features 45

passivation and activation.

The following are the requirements for the container.

The container performs the Java programming language Serialization (or its equivalent) of the
instance’s state (and its interceptors’ state) after it invokes the PrePassivate method on the instance
and its interceptors.

The container must be able to properly save and restore the reference to the business interfaces and
home and component interfaces of the enterprise beans stored in the instance’s state even if the
classes that implement the object references are not serializable.

The container may use, for example, the object replacement technique that is part of the
java.io.ObjectOutputStream and java.io.ObjectInputStream protocol to externalize the home and
component references.

The container must be able to properly save and restore references to timers stored in the instance’s
state even if the classes that implement the timers are not serializable.

If the session bean instance stores in its conversational state an object reference to the
jakarta.ejb.SessionContext interface, the container must be able to save and restore the reference
across the instance’s passivation. The container can replace the original SessionContext object with a
different and functionally equivalent SessionContext object during activation.

If the session bean instance stores in its conversational state an object reference to the java:comp/env
JNDI context or its subcontext, the container must be able to save and restore the object reference
across the instance’s passivation. The container can replace the original object with a different and
functionally equivalent object during activation.

If the session bean instance stores in its conversational state an object reference to the UserTransaction
interface, the container must be able to save and restore the object reference across the instance’s
passivation. The container can replace the original object with a different and functionally equivalent
object during activation.

If the session bean instance stores in its conversational state an object reference to a container-
managed EntityManager or to an EntityManagerFactory obtained via injection or JNDI lookup, the
container must be able to save and restore the object reference across the instance’s passivation.

The container may destroy a session bean instance if the instance does not meet the requirements for
serialization after PrePassivate.

While the container is not required to use the Serialization protocol for the Java programming
language to store the state of a passivated session instance, it must achieve the equivalent result. The
one exception is that containers are not required to reset the value of transient fields during
activation.[15] Declaring the session bean’s fields as transient is, in general, discouraged.

4.2. Conversational State of a Stateful Session Bean

46 Jakarta® Enterprise Beans, Core Features Final

4.2.2. The Effect of Transaction Rollback on Conversational State

A session object’s conversational state is not transactional. It is not automatically rolled back to its
initial state if the transaction in which the object has participated rolls back.

If a rollback could result in an inconsistency between a session object’s conversational state and the
state of the underlying database, the bean developer (or the application development tools used by the
developer) must use the afterCompletion notification to manually reset its state.

4.3. Protocol Between a Session Bean Instance and its
Container
Containers themselves make no actual service demands on the session bean instances. The container
makes calls on a bean instance to provide it with access to container services and to deliver
notifications issued by the container.

4.3.1. Required Session Bean Metadata

A session bean must be annotated or denoted in the deployment descriptor as a stateless, stateful, or
singleton session bean. A stateless session bean must be annotated with the Stateless annotation or
denoted in the deployment descriptor as a stateless session bean. A stateful session bean must be
annotated with the Stateful annotation or denoted in the deployment descriptor as a stateful session
bean. A singleton session bean must be annotated with the Singleton annotation or denoted in the
deployment descriptor as a singleton session bean. The Stateful, Singleton, and Stateless annotations
are component-defining annotations and are applied to the bean class.

4.3.2. Dependency Injection

A session bean may use dependency injection mechanisms to acquire references to resources or other
objects in its environment (see Enterprise Bean Environment). If a session bean makes use of
dependency injection, the container injects these references after the bean instance is created, and
before any business methods are invoked on the bean instance. If a dependency on the SessionContext
is declared, or if the bean class implements the optional SessionBean interface (see The SessionBean
Interface), the SessionContext is also injected at this time. If dependency injection fails, the bean
instance is discarded.

Under the Enterprise Beans 3.x API, the bean class may acquire the SessionContext interface
through dependency injection without having to implement the SessionBean interface. In this case,
the Resource annotation (or resource-env-ref deployment descriptor element) is used to denote the
bean’s dependency on the SessionContext. See Enterprise Bean Environment.

4.3. Protocol Between a Session Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 47

4.3.3. The SessionContext Interface

If the bean specifies a dependency on the SessionContext interface (or if the bean class implements the
SessionBean interface), the container must provide the session bean instance with a SessionContext
object. This gives the session bean instance access to the instance’s context maintained by the
container. The SessionContext interface has the following methods:

• The getCallerPrincipal method returns the java.security.Principal that identifies the invoker.

• The isCallerInRole method tests if the session bean instance’s caller has a particular role.

• The setRollbackOnly method allows the instance to mark the current transaction such that the only
outcome of the transaction is a rollback. Only instances of a session bean with container-managed
transaction demarcation are permitted to use this method.

• The getRollbackOnly method allows the instance to test if the current transaction has been marked
for rollback. Only instances of a session bean with container-managed transaction demarcation are
permitted to use this method.

• The getUserTransaction method returns the jakarta.transaction.UserTransaction interface. The
instance can use this interface to demarcate transactions and to obtain transaction status. Only
instances of a session bean with bean-managed transaction demarcation are permitted to use this
method.

• The getTimerService method returns the jakarta.ejb.TimerService interface. Only stateless session
beans and singleton session beans are permitted to use this method. Stateful session beans cannot
be timed objects.

• The getBusinessObject(java.lang.Class<T> businessInterface) method returns a business object
reference to the session bean’s business interface or no-interface view. In the case of the no-
interface view, the argument is of the type of the bean class. Only session beans with an Enterprise
Beans 3.x business interface or no-interface view are permitted to call this method.
If a subsequent invocation is made on the result of getBusinessObject, then:

◦ For a stateless session bean, the invocation will be delivered to another stateless session bean
instance.

◦ For a stateful session bean or singleton session bean, the invocation will be delivered to the
bean instance that returned the reference. The existing rules regarding reentrancy would then
apply.

• The getInvokedBusinessInterface method returns the session bean business interface or no-
interface view (bean class) type through which the bean was invoked.

• The getEJBObject method returns the session bean’s remote component interface. Only session
beans with a remote EJBObject interface are permitted to call this method.

• The getEJBHome method returns the session bean’s remote home interface. Only session beans with
a remote home interface are permitted to call this method.

• The getEJBLocalObject method returns the session bean’s local component interface. Only session
beans with a local EJBLocalObject interface are permitted to call this method.

4.3. Protocol Between a Session Bean Instance and its Container

48 Jakarta® Enterprise Beans, Core Features Final

• The getEJBLocalHome method returns the session bean’s local home interface. Only session beans
with a local home interface are permitted to call this method.

• The lookup method enables the session bean to look up its environment entries in the JNDI naming
context.

• The wasCancelCalled method enables an asynchronous session bean method to check whether the
client invoked its Future.cancel method. The SessionContext.wasCancelCalled method only returns
true if the cancel method was invoked on the client Future object corresponding to the currently
executing business method and the mayInterruptIfRunning parameter was set to true.

• The getContextData method enables a business method, lifecycle callback method, or timeout
method to retrieve or update the interceptor and/or webservices context data associated with its
invocation.

4.3.3.1. Use of the MessageContext Interface by Session Beans

A session bean that implements a web service endpoint using the Jakarta XML Web Services contracts
should use the WebServiceContext, which can be injected by use of the Resource annotation. The
WebServiceContext interface allows the session bean instance to see the SOAP message for the web
service endpoint, as well as the properties set by the Jakarta XML Web Services message handlers, if
any. The session bean may use the WebServiceContext interface to set properties for the Jakarta XML
Web Services message handlers, if any. See [4].

The jakarta.xml.ws.handler.MessageContext[4] is also accessible to interceptors for session bean web
service endpoints. See InvocationContext.

4.3.4. Session Bean Lifecycle Callback Interceptor Methods

The following lifecycle event callbacks are supported for session beans. With the exception of
AroundConstruct lifecycle callback interceptors (see [15]), all interceptor methods may be defined
directly on the bean class or on a separate interceptor class. See Lifecycle Callback Interceptor Methods
and Interceptors.

• AroundConstruct

• PostConstruct

• PreDestroy

• PostActivate

• PrePassivate

The PostConstruct callback invocations occur before the first business method invocation on the bean
instance. This is at a point after which any dependency injection has been performed by the container.

The PostConstruct lifecycle callback interceptor methods execute in an unspecified security context.

The PostConstruct lifecycle callback interceptor methods for a stateless session bean execute in an

4.3. Protocol Between a Session Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 49

unspecified transaction context. The PostConstruct lifecycle callback interceptor methods for a
singleton session bean execute in a transaction context determined by the bean’s transaction
management type and any applicable transaction attribute. The PostConstruct lifecycle callback
interceptor methods for a stateful session bean execute in a transaction context determined by the
lifecycle callback method’s transaction attribute.

The PreDestroy callback notification signals that the instance is in the process of being removed by the
container. In the PreDestroy lifecycle callback interceptor methods, the instance typically releases the
resources that it has been holding.

The PreDestroy lifecycle callback interceptor methods execute in an unspecified security context.

The PreDestroy lifecycle callback interceptor methods for a stateless session bean execute in an
unspecified transaction context. The PreDestroy lifecycle callback interceptor methods for a singleton
session bean execute in a transaction context determined by the bean’s transaction management type
and any applicable transaction attribute. The PreDestroy lifecycle callback interceptor methods for a
stateful bean execute in a transaction context determined by the lifecycle callback method’s
transaction attribute.

The PrePassivate and PostActivate lifecycle callback interceptor methods are only called on a stateful
session bean instance if the bean is passivation capable. By default a stateful session bean is
passivation capable. See Disabling Passivation of Stateful Session Beans on how to disable passivation
of a stateful session bean.

The PrePassivate callback notification signals the intent of the container to passivate the instance. The
PostActivate notification signals the instance it has just been reactivated. Because containers
automatically maintain the conversational state of a stateful session bean instance when it is
passivated, these notifications are not needed for most session beans. Their purpose is to allow stateful
session beans to maintain those open resources that need to be closed prior to an instance’s
passivation and then reopened during an instance’s activation.

The PrePassivate and PostActivate lifecycle callback interceptor methods execute in an unspecified
security context.

The PrePassivate and PostActivate lifecycle callback interceptor methods execute in a transaction
context determined by the lifecycle callback method’s transaction attribute.

4.3.5. The SessionBean Interface

The session bean class is not required to implement the SessionBean interface or the Serializable
interface. Interceptor classes for the bean are likewise not required to implement the Serializable
interface.

Compatibility Note: The SessionBean interface was required to be implemented by the session bean class
in earlier versions of the Enterprise Beans specification. Under the Enterprise Beans 3.x API, the
functionality previously provided by the SessionBean interface is available to the bean class through

4.3. Protocol Between a Session Bean Instance and its Container

50 Jakarta® Enterprise Beans, Core Features Final

selective use of dependency injection (of the SessionContext) and optional lifecycle callback interceptor
methods.

The SessionBean interface defines four methods: setSessionContext, ejbRemove, ejbPassivate, and
ejbActivate.

The setSessionContext method is called by the bean’s container to associate a session bean instance
with its context maintained by the container. Typically a session bean instance retains its session
context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the container.
In the ejbRemove method, the instance typically releases the same resources that it releases in the
ejbPassivate method.

Under the Enterprise Beans 3.x API, the bean class may optionally define a PreDestroy lifecycle
callback interceptor method for notification of the container’s removal of the bean instance.

The ejbPassivate notification signals the intent of the container to passivate the instance. The
ejbActivate notification signals the instance it has just been reactivated. Their purpose is to allow
stateful session beans to maintain those open resources that need to be closed prior to an instance’s
passivation and then reopened during an instance’s activation. The ejbPassivate and ejbActivate
methods are only called on stateful session bean instances.

Under the Enterprise Beans 3.x API, the bean class may optionally define PrePassivate and/or
PostActivate lifecycle callback interceptor methods for notification of the passivation/activation of
the bean instance.

This specification requires that the ejbRemove, ejbActivate, and ejbPassivate methods of the SessionBean
interface, and the ejbCreate method of a stateless session bean be treated as PreDestroy, PostActivate,
PrePassivate and PostConstruct life cycle callback interceptor methods, respectively.

If the session bean implements the SessionBean interface, the PreDestroy annotation on the bean class
can only be applied to the ejbRemove method; the PostActivate annotation can only be applied to the
ejbActivate method; the PrePassivate annotation can only be applied to the ejbPassivate method.
Similar requirements apply to use of deployment descriptor metadata as an alternative to the use of
annotations.

4.3.6. The Session Synchronization Notifications for Stateful Session Beans

A stateful session bean class can optionally implement the jakarta.ejb.SessionSynchronization

interface or annotate methods using the individual AfterBegin, BeforeCompletion, and AfterCompletion
annotations. The deployment descriptor may also be used to declare the individual session
synchronization methods. These provide the session bean instances with transaction synchronization

4.3. Protocol Between a Session Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 51

notifications. The instances can use these notifications, for example, to manage database data they may
cache within transactions—e.g., if Jakarta Persistence is not used. A stateful session bean class may use
either the jakarta.ejb.SessionSynchronization interface or the session synchronization annotations,
but not both. If annotation are used, there must be at most one AfterBegin method, one
BeforeCompletion method, and one AfterCompletion method for the bean.

The afterBegin notification signals a session bean instance that a new transaction has begun. The
container invokes this method before the first business method within a transaction (which is not
necessarily at the beginning of the transaction). The afterBegin notification is invoked with the
transaction context. The instance may do any database work it requires within the scope of the
transaction.

The beforeCompletion notification is issued when a session bean instance’s client has completed work
on its current transaction but prior to committing the resource managers used by the instance. At this
time, the instance should write out any database updates it has cached. The instance can cause the
transaction to roll back by invoking the setRollbackOnly method on its SessionContext object.

The afterCompletion notification signals that the current transaction has completed. A completion
status of true indicates that the transaction has committed. A status of false indicates that a rollback
has occurred. Since a session bean instance’s conversational state is not transactional, it may need to
manually reset its state if a rollback occurred.

All Container Providers must support the session synchronization notifications. If a bean class
implements the SessionSynchronization interface, the container must invoke the afterBegin,
beforeCompletion, and afterCompletion notifications as required by the specification. If the bean
implementor uses the session synchronization annotations, the container must invoke only the
notifications corresponding to the annotations that have been used.

If a stateful session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback
interceptor method is invoked in the scope of a transaction, session synchronization callbacks for the
transaction are not called on the bean instance.

A session synchronization method can have public, private, protected, or package level access. A
session synchronization method must not be declared as final or static.

Only a stateful session bean with container-managed transaction demarcation can receive session
synchronization notifications. Stateless session beans and singleton session beans must not implement
the SessionSynchronization interface or use the session synchronization annotations.

There is no need for a session bean with bean-managed transaction demarcation to rely on the
synchronization call backs because the bean is in control of the commit—the bean knows when the
transaction is about to be committed and it knows the outcome of the transaction commit.

4.3.7. Timeout Callbacks for Stateless and Singleton Session Beans

A stateless session bean or singleton session bean can be registered with the Enterprise Beans Timer

4.3. Protocol Between a Session Bean Instance and its Container

52 Jakarta® Enterprise Beans, Core Features Final

Service for time-based event notifications. The container invokes the appropriate bean instance
timeout callback method when a timer for the bean has expired. See Timer Service. Stateful session
beans cannot be registered with the Enterprise Beans Timer Service, and therefore should not
implement timeout callback methods.

4.3.8. Business Method Delegation

The session bean’s business interface, no-interface view, component interface, or web service endpoint
defines the business methods callable by a client.

The container classes that implement these are generated by the container tools. The class that
implements the session bean’s business interface and the class that implements the session bean’s
no-interface view and the class that implements a session bean’s component interface delegate an
invocation of a business method to the matching business method that is implemented in the
session bean class. The class that handles requests to the web service endpoint invokes the session
bean method that matches the web service method corresponding to the SOAP request.

4.3.9. Session Bean Creation

Except as noted below, the container creates an instance of a session bean as follows. First, the
container calls the bean class constructor to create a new session bean instance. Second, the container
performs any dependency injection as specified by metadata annotations on the bean class or by the
deployment descriptor. This includes the bean’s SessionContext, if applicable. Third, the container calls
the PostConstruct lifecycle callback interceptor methods for the bean, if any. The additional steps
described below in Stateful Session Beans and Stateless Session Beans apply if the session bean is
invoked through the Enterprise Beans 2.1 client view APIs.

If an interceptor associated with the session bean declares an AroundConstruct lifecycle callback
interceptor method, the container follows the rules for the AroundConstruct interceptors defined in the
Jakarta® Interceptors specification [15].

4.3.9.1. Stateful Session Beans

If the bean is a stateful session bean and the client has used one of the create<METHOD> methods defined
in the session bean’s home or local home interface to create the bean, the container then calls the
instance’s initialization method whose signature matches the signature of the create<METHOD> invoked
by the client, passing to the method the input parameters sent from the client. If the bean class is
written to the Enterprise Beans 3.x API, and has been adapted for use with an earlier client view, this
initialization method is a matching Init method, as designated by use of the Init annotation, or init-
method deployment descriptor element.[16] If the bean class was written to the Enterprise Beans 2.1 or
earlier API, this initialization method is a matching ejbCreate<METHOD> method, as described in
ejbCreate<METHOD> Methods.

Each stateful session bean class that has a home interface must have at least one such initialization

4.3. Protocol Between a Session Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 53

method. The number and signatures of a session bean’s initialization methods are specific to each
session bean class. Since a stateful session bean represents a specific, private conversation between the
bean and its client, its initialization parameters typically contain the information the client uses to
customize the bean instance for its use.

4.3.9.2. Stateless Session Beans

A stateless session bean that has an Enterprise Beans 2.1 local or remote client view has a single create
method on its home interface. In this case, Enterprise Beans 2.1 required the stateless session bean
class to have a single no-arg ejbCreate method. Under the Enterprise Beans 3.x API, it is not required
that a stateless session bean have an ejbCreate method, even when it has a home interface. An
Enterprise Beans 3.x stateless session bean class may have a PostConstruct method, as described in
Session Bean Lifecycle Callback Interceptor Methods.

If the stateless session bean instance has an ejbCreate method, the container treats the ejbCreate
method as the instance’s PostConstruct method, and, in this case, the PostConstruct annotation (or
deployment descriptor metadata) can only be applied to the bean’s ejbCreate method.

Since stateless session bean instances are typically pooled, the time of the client’s invocation of the
create method need not have any direct relationship to the container’s invocation of the
PostConstruct/ejbCreate method on the stateless session bean instance.

A stateless session bean that provides only a web service client view has no create method. If the
ejbCreate method required by Enterprise Beans 2.1 is present, it is treated by the container as the
instance’s PostConstruct method, and is invoked when the container needs to create a new session
bean instance in order to service a client request.

4.3.10. Stateful Session Bean Removal

A stateful session bean written to the Enterprise Beans 3.x API typically has one or more remove
methods designated by means of the Remove annotation or remove-method deployment descriptor
element.[17] Invocation of the remove method causes the removal of the stateful session bean after the
remove method successfully completes. If the Remove annotation specifies the value of
retainIfException as true and the invocation of the Remove method throws an application exception, the
instance is not removed. The retain-if-exception subelement of the remove-method deployment
descriptor element may be explicitly specified to override the retainIfException value specified or
defaulted by the Remove annotation. The default value of the retainIfException element is false. If there
are multiple remove methods, their retainIfException values can differ.

4.3.11. Stateful Session Bean Timeout

A Bean Provider or Deployer may optionally assign a timeout value to a stateful session bean. The
stateful session bean timeout is specified using the StatefulTimeout annotation on the bean class. It
may also be specified using the stateful-timeout deployment descriptor element. If both are specified,

4.3. Protocol Between a Session Bean Instance and its Container

54 Jakarta® Enterprise Beans, Core Features Final

the deployment descriptor value overrides that of the annotation.

The timeout value is the amount of time a stateful session bean instance is permitted to remain idle
(not receive any client invocations) before being removed by the container. A timeout value of -1
indicates that the bean must not be removed due to timeout for as long as the application is deployed.
A timeout value of 0 indicates that the bean is immediately eligible for removal after becoming idle.

If a stateful session bean timeout is not designated using this standard metadata, the container
determines when to end the lifetime of the bean, possibly based on vendor-specific configuration. The
details of such configuration are beyond the scope of the specification.

A stateful session bean instance must not be removed due to timeout while it is associated with a
transaction or while it is processing a business method or callback. The full stateful session bean life
cycle is covered in Stateful Session Beans.

4.3.12. Business Method Interceptor Methods for Session Beans

The AroundInvoke interceptor methods are supported for session beans. These interceptor methods may
be defined on the bean class and/or on interceptor classes, and apply to the handling of the invocation
of the business methods of the bean’s business interface, no-interface view, component interface,
and/or web service endpoint.

For stateful session beans that use the session synchronization notifications, the afterBegin notification
occurs before any AroundInvoke method invocations, and the beforeCompletion notification occurs after
all AroundInvoke invocations have finished.

Interceptors are described in Interceptors.

4.3.13. Serializing Session Bean Methods

The following requirements apply to stateless and stateful session beans. See Singleton Session Bean
Concurrency for singleton session bean concurrency requirements.

The container serializes calls to each stateful and stateless session bean instance. Most containers will
support many instances of a session bean executing concurrently; however, each instance sees only a
serialized sequence of method calls. Therefore, a stateful or stateless session bean does not have to be
coded as reentrant.

The container must serialize all the container-invoked callbacks (that is, the business method
interceptor methods, lifecycle callback interceptor methods, timeout callback methods,
beforeCompletion methods, and so on), and it must serialize these callbacks with the client-invoked
business method calls.

By default, clients are allowed to make concurrent calls to a stateful session object and the container is
required to serialize such concurrent requests. Note that the container never permits multi-threaded
access to the actual stateful session bean instance. For this reason, Read/Write method locking
metadata, as well as the bean-managed concurrency mode, are not applicable to stateful session beans

4.3. Protocol Between a Session Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 55

and must not be used.[18] See Singleton Session Bean Concurrency for a description of how these
concurrency modes and locking types apply to singleton session beans.

The Bean Provider may optionally specify that concurrent client requests to a stateful session bean are
prohibited. This is done using the AccessTimeout annotation or the access-timeout deployment
descriptor element with a value of 0. In this case, if a client-invoked business method is in progress on
an instance when another client-invoked call, from the same or different client, arrives at the same
stateful session bean istance, if the second client is a client of the bean’s business interface or no-
interface view, the concurrent invocation must result in the second client receiving the
jakarta.ejb.ConcurrentAccessException.[19] If the Enterprise Beans 2.1 client view is used, the container
must throw the java.rmi.RemoteException if the second client is a remote client, or the
jakarta.ejb.EJBException if the second client is a local client.

There is no need for any restrictions against concurrent client access to stateless session beans because
the container routes each request to a different instance of the stateless session bean class.

4.3.13.1. Stateful Session Bean Concurrent Access Timeouts

The AccessTimeout annotation is used to specify the amount of time a stateful session bean request
should block in the case that it cannot immediately access a bean instance that is already processing a
different request. If an access attempt times out, the container throws the
jakarta.ejb.ConcurrentAccessTimeoutException to the client.

The AccessTimeout annotation can be specified on a business method or on the bean class (or
superclass). The AccessTimeout annotation specified on a class applies the access timeout to all business
methods of that class. If the AccessTimeout annotation is specified on both the class and on a business
method of that class, the method-level annotation takes precedence.

An AccessTimeout value of -1 indicates that a concurrent client request will block indefinitely until it
can proceed.

4.3.14. Transaction Context of Session Bean Methods

The following session bean methods are invoked in the scope of a transaction determined by the
transaction attribute specified in the bean’s metadata annotations or deployment descriptor.

• An implementation of a method defined in a session bean’s business interface or component
interface or no-interface view.

• A web service method.

• A timeout callback method

• A singleton session bean’s PostConstruct or PreDestroy lifecycle callback interceptor method.

A stateful session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback
interceptor method is invoked in the scope of a transaction determined by the transaction attribute
specified in the lifecycle callback method’s metadata annotations or deployment descriptor.

4.3. Protocol Between a Session Bean Instance and its Container

56 Jakarta® Enterprise Beans, Core Features Final

A stateful session bean’s afterBegin and beforeCompletion methods are always called with the same
transaction context as the business methods executed between the afterBegin and beforeCompletion
methods.

A session bean’s constructor, setSessionContext, other dependency injection methods, other life cycle
callback interceptor methods, and afterCompletion methods are called with an unspecified transaction
context. Refer to Handling of Methods that Run with "an unspecified transaction context" for how the
container executes methods with an unspecified transaction context.

If database operations are performed within a stateful session bean’s PostConstruct, PreDestroy,
PrePassivate or PostActivate lifecycle callback interceptor methods these operations will not be part of
the client’s transaction. If such a transaction is rolled back, the instance is discarded. See Dealing with
Exceptions for rules on dealing with exceptions in stateful session beans.

4.4. Access in the Global JNDI Namespace
The Jakarta EE Platform Specification defines a standardized global JNDI namespace and a series of
related namespaces that map to the various scopes of a Jakarta EE application. These namespaces can
be used by applications to portably retrieve references to components and resources. This specification
defines the JNDI names by which session beans are required to be registered within these namespaces.

4.4.1. Syntax

Each portable session bean global JNDI name has the following syntax:

java:global[/<app-name>]/<module-name>/<bean-name>[!<fully-qualified-interface-name>]

• <app-name> only applies if the session bean is packaged within an .ear file. It defaults to the base
name of the .ear file with no filename extension, unless specified by the application.xml
deployment descriptor.

• <module-name> is the name of the module in which the session bean is packaged. In a stand-alone
ejb-jar file or .war file, <module-name> defaults to the base name of the module with any filename
extension removed. In an ear file, the <module-name> defaults to the pathname of the module with
any filename extension removed, but with any directory names included. The default module
name can be overridden using the module-name element of ejb-jar.xml file (for ejb-jar files) or
web.xml file (for .war files).

• <bean-name> is the ejb-name of the enterprise bean. For enterprise beans defined via annotations, it
defaults to the unqualified name of the session bean class, unless otherwise specified by the name
element of the Stateless, Stateful, or Singleton annotation. For enterprise beans defined via the
ejb-jar.xml file, it is specified in the ejb-name deployment descriptor element.

The container registers a separate JNDI name entry for each local business interface, each remote
business interface, any no-interface view, any local home interface, and any remote home interface.
For the no-interface view, the last portion of the entry name is the fully-qualified name of the bean
class.

4.4. Access in the Global JNDI Namespace

Final Jakarta® Enterprise Beans, Core Features 57

In addition to the previous requirements, if the bean exposes only one of the applicable client
interfaces (or, alternatively has only a no-interface view), the container registers an entry for that view
with the following syntax:

java:global[/<app-name>]/<module-name>/<bean-name>

The container is also required to make session bean JNDI names available through the java:app and
java:module namespaces.[20]

4.4.1.1. java:app

The java:app prefix allows a component executing within a Jakarta EE application to access an
application-specific namespace. The resulting syntax is:

java:app/<module-name>/<bean-name>[!<fully-qualified-interface-name>]

Note that <module-name> is a required part of the syntax, even for names based on session bean
components packaged within a stand-alone module.

4.4.1.2. java:module

The java:module prefix allows a component executing within a Jakarta EE application to access a
module-specific namespace. The resulting syntax is:

java:module/<bean-name>[!<fully-qualified-interface-name>]

4.4.2. Examples

The following examples show the resulting global JNDI names for various session beans.

4.4.2.1. Session bean exposing a single local business interface

package com.acme;

@Stateless
public class FooBean implements Foo { ... }

If FooBean is packaged in fooejb.jar without a deployment descriptor and deployed as a stand-alone
module, the resulting JNDI name entries are:

4.4. Access in the Global JNDI Namespace

58 Jakarta® Enterprise Beans, Core Features Final

java:global/fooejb/FooBean
java:global/fooejb/FooBean!com.acme.Foo

java:app/fooejb/FooBean
java:app/fooejb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo

If FooBean is packaged in fooejb.jar within fooapp.ear, without the use of any deployment descriptors,
the resulting global JNDI name entries are:

java:global/fooapp/fooejb/FooBean
java:global/fooapp/fooejb/FooBean!com.acme.Foo

java:app/fooejb/FooBean
java:app/fooejb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo

If FooBean is packaged in a stand-alone fooweb.war file, without the use of any deployment descriptors,
the resulting global JNDI name entries are:

java:global/fooweb/FooBean
java:global/fooweb/FooBean!com.acme.Foo

java:app/fooweb/FooBean
java:app/fooweb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo

If FooBean is packaged in fooweb.war within fooapp.ear, without the use of any deployment descriptors,
the resulting global JNDI name entries are:

4.4. Access in the Global JNDI Namespace

Final Jakarta® Enterprise Beans, Core Features 59

java:global/fooapp/fooweb/FooBean
java:global/fooapp/fooweb/FooBean!com.acme.Foo

java:app/fooweb/FooBean
java:app/fooweb/FooBean!com.acme.Foo

java:module/FooBean
java:module/FooBean!com.acme.Foo

4.4.2.2. Session bean exposing multiple client views

package com.acme;

@Singleton(name="Shared")
@LocalBean
@Remote(com.acme.SharedRemote.class)
public class SharedBean { ... }

If SharedBean is packaged in shared.jar without a deployment descriptor and deployed as a stand-alone
module, the resulting global JNDI name entries are:

java:global/shared/Shared!com.acme.SharedBean
java:global/shared/Shared!com.acme.SharedRemote

java:app/shared/Shared!com.acme.SharedBean
java:app/shared/Shared!com.acme.SharedRemote

java:module/Shared!com.acme.SharedBean
java:module/Shared!com.acme.SharedRemote

4.5. Asynchronous Methods
A session bean can expose methods with asynchronous client invocation semantics. For asynchronous
invocations, control returns to the client before the container dispatches the invocation to a bean
instance. An asynchronous method is a business method exposed through one or more of the remote
business, local business, or no-interface session bean views.

Asynchronous methods can return a Future<V> object that allows the client to retrieve a result value,
check for exceptions, or attempt to cancel an in-progress invocation.

4.5. Asynchronous Methods

60 Jakarta® Enterprise Beans, Core Features Final

4.5.1. Metadata

The Asynchronous annotation is used to designate which business methods are asynchronous.

The Asynchronous annotation can be applied to a particular business method of a bean class (or
superclass), or to the bean class (or superclass). If the Asynchronous annotation is applied at the class
level, all business methods declared on that specific class are asynchronous.

Asynchronous methods can also be designated via the deployment descriptor.

Asynchronous method invocation semantics only apply to the no-interface, local business, and remote
business client views. Support for asynchronous business methods exposed through the local
component, remote component, and web service client views is not required by this specification, and
applications which expose such views with asynchronous methods will not be portable.

4.5.2. Method Requirements

The valid return type of an asynchronous method is either void or java.util.concurrent.Future<V>,
where V is the result value type.

An asynchronous method with return type void must not declare any application exceptions. An
asynchronous method with return type Future<V> is permitted to declare application exceptions.

4.5.2.1. Return Values

The Bean Provider makes the result value of an asynchronous invocation available to the client by
returning a Future<V> object for which both get() methods return the result value. A concrete
Future<V> implemention called jakarta.ejb.AsyncResult<V> is provided by the container as a
convenience. The AsyncResult<V> class has a constructor that takes the result value as a parameter.

Example:

@Asynchronous
public Future<Integer> performCalculation(...) {

 // ... do calculation

 Integer result = ...;

 return new AsyncResult<Integer>(result);
}

Note that the Future<V> object returned from the bean class method (including any instance of
AsyncResult<V>) is only used as a way to pass the result value to the container. This object is not given
directly to the caller, since by definition the caller already has a container-generated Future<V> object
that was returned from the original invocation.

4.5. Asynchronous Methods

Final Jakarta® Enterprise Beans, Core Features 61

4.5.2.2. Method cancellation

A client can request that an asynchronous invocation be cancelled by calling the
Future<V>.cancel(boolean mayInterruptIfRunning) method. The Bean Provider can check whether the
client has requested cancellation by calling the SessionContext.wasCancelCalled() method within the
context of the asynchronous method. See Asynchronous Invocations for the description of the client
Future contract.

4.5.3. Transactions

The client’s transaction context does not propagate with an asynchronous method invocation. From
the Bean Provider’s point of view, there is never a transaction context flowing in from the client. This
means, for example, that the semantics of the REQUIRED transaction attribute on an asynchronous
method are exactly the same as REQUIRES_NEW.

4.5.4. Security

The caller security principal propagates with an asynchronous method invocation. Caller security
principal propagation behaves exactly the same for asynchronous method invocations as it does for
synchronous session bean invocations.

4.5.5. Client Exception Behavior

Client exception behavior depends on whether the asynchronous method has return type void or
Future<V>.

If the asynchronous method has return type void, then once control has returned from the client’s
method call no exceptions occurring during the processing of the invocation will be delivered to the
client. For this reason, asynchronous methods with return type void must not declare application
exceptions.

If the asynchronous method has return type Future<V>, an exception thrown from the processing of the
asynchronous method invocation is accessible to the client via the getCause() method of a
java.util.concurrent.ExecutionException thrown from either Future.get() method.

4.6. Stateful Session Beans

4.6.1. Stateful Session Bean Lifecycle State Diagram

The following figure illustrates the life cycle of a stateful session bean instance.

4.6. Stateful Session Beans

62 Jakarta® Enterprise Beans, Core Features Final

dependency injection,
business interface lookup, or
create<METHOD>(args)

1. AroundConstruct callbacks, if any
2. constructor
3. dependency injection, if any
4. PostConstruct callbacks, if any
5. Init method, or
ejbCreate<METHOD>, if any

does not exist

method readynon-tx method

tx method

afterBegin()

method ready in TX

tx method

1. beforeCompletion()
2. afterCompletion(true)

commit

non-tx or different tx method
ERROR

afterCompletion(false)

rollback

PrePassivate callbacks, if any

chosen as LRU victim

passive

PostActivate callbacks, if any

method

Remove method
or CDI context destroyed
or timeout

PreDestroy callbacks, if any
timeout

instance throws system
exception from any method

create()

constructor

action initiated by client

action initiated by container

Figure 5. Life Cycle of a Stateful Session Bean Instance

The following steps describe the life cycle of a stateful session bean instance:

• A session bean instance’s life starts when a client obtains a reference to a stateful session bean
instance through dependency injection or JNDI lookup, or when the client invokes a create<METHOD>
method on the session bean’s home interface. This causes the container to invoke the session bean
class constructor to create a new session bean instance.[21] Next, the container performs any
dependency injection as specified by metadata annotations on the bean class or by the deployment
descriptor. The container then calls the PostConstruct lifecycle callback interceptor method(s) for

4.6. Stateful Session Beans

Final Jakarta® Enterprise Beans, Core Features 63

the bean, if any. Finally, if the session bean was written to the Enterprise Beans 2.1 client view, the
container invokes the matching ejbCreate<METHOD> or Init method on the instance. The container
then returns the session object reference to the client. The instance is now in the method ready
state.
NOTE: When a stateful session bean is looked up or otherwise obtained through the explicit JNDI
lookup mechanisms, the container must provide a new stateful session bean instance, as required by
the Jakarta EE specification (Section "Java Naming and Directory Interface (JNDI) Naming Context"
[14]).

• The session bean instance is now ready for client’s business methods. Based on the transaction
attributes in the session bean’s metadata annotations and/or deployment descriptor and the
transaction context associated with the client’s invocation, a business method is executed either in
a transaction context or with an unspecified transaction context (shown as "tx method" and "non-tx
method" in the diagram). See Support for Transactions for how the container deals with
transactions.

• A non-transactional method is executed while the instance is in the method ready state.

• An invocation of a transactional method causes the instance to be included in a transaction. When
the session bean instance is included in a transaction, the container issues the afterBegin method
on it if the session bean has an afterBegin callback method.[22] The afterBegin method is invoked on
the instance before any business method or business method interceptor method is executed as
part of the transaction. The instance becomes associated with the transaction and will remain
associated with the transaction until the transaction completes.

• Session bean methods invoked by the client in this transaction can now be delegated to the bean
instance. An error occurs if a client attempts to invoke a method on the session object and the
bean’s metadata annotations and/or deployment descriptor for the method requires that the
container invoke the method in a different transaction context than the one with which the
instance is currently associated or in an unspecified transaction context.

• If a transaction commit has been requested, the transaction service notifies the container of the
commit request before actually committing the transaction, and the container issues the
beforeCompletion callback on the instance if the session bean has a beforeCompletion callback
method.[22] When beforeCompletion is invoked, the instance should write any cached updates to the
database.[23] If a transaction rollback had been requested instead, the rollback status is reached
without the container issuing a beforeCompletion . The container may not call the beforeCompletion
method if the transaction has been marked for rollback (nor does the instance write any cached
updates to the database).

• The transaction service then attempts to commit the transaction, resulting in either a commit or
rollback.

• When the transaction completes, the container issues afterCompletion on the instance if the session
bean has an afterCompletion callback method,[22] specifying the status of the completion (either
commit or rollback). If a rollback occurred, the bean instance may need to reset its conversational
state back to the value it had at the beginning of the transaction.

• The container’s caching algorithm may decide that the bean instance should be evicted from

4.6. Stateful Session Beans

64 Jakarta® Enterprise Beans, Core Features Final

memory. (This could be done at the end of each method, or by using an LRU policy). The container
invokes the PrePassivate lifecycle callback interceptor method(s) for the bean instance, if any. After
this completes, the container saves the instance’s state to secondary storage. A session bean can be
passivated only between transactions, and not within a transaction.

• While the instance is in the passivated state, the container may remove the session object after the
expiration of a timeout specified by the Deployer. All object references and handles for the session
object become invalid. If a client attempts to invoke a method on the bean’s business interface, the
container will throw the jakarta.ejb.NoSuchEJBException.[24] If the Enterprise Beans 2.1 client view
is used, the container will throw the java.rmi.NoSuchObjectException if the client is a remote client,
or the jakarta.ejb.NoSuchObjectLocalException if the client is a local client.

• If a client invokes a session object whose session bean instance has been passivated, the container
will activate the instance. To activate the session bean instance, the container restores the
instance’s state from secondary storage and invokes the PostActivate method for the instance, if
any.

• The session bean instance is again ready for client methods.

• When the client calls a business method of the bean that has been designated as a Remove method
on the bean class or a remove method on the home or component interface, the container invokes
PreDestroy lifecycle callback interceptor methods, if any, for the bean instance after the Remove
method completes.[25] This ends the life of the session bean instance and the associated session
object. If a client subsequently attempts to invoke a method on the bean’s business interface, the
container will throw the jakarta.ejb.NoSuchEJBException.[26] If the Enterprise Beans 2.1 client view
is used, any subsequent attempt causes the java.rmi.NoSuchObjectException to be thrown if the
client is a remote client, or the jakarta.ejb.NoSuchObjectLocalException if the client is a local client.
(The java.rmi.NoSuchObjectException is a subclass of the java.rmi.RemoteException; the
jakarta.ejb.NoSuchObjectLocalException is a subclass of the jakarta.ejb.EJBException). If the Remove
method completes successfully or if the Remove method throws an application exception for which
retainIfException is not true or if a system exception is thrown, session synchronization methods
are not called on the bean instance. If an application exception is thrown for which
retainIfException is true , the bean is neither destroyed nor discarded, and session synchronization
methods, if any, are called on the instance at the end of transaction. A container can also invoke the
PreDestroy method on the instance without a client call to remove the session object:

◦ After the lifetime of the Enterprise Beans object has expired

◦ When the CDI context, to which the Enterprise Beans object belongs to, is destroyed.

The container must call the afterBegin, beforeCompletion, and afterCompletion methods if the session
bean class implements, directly or indirectly, the SessionSynchronization interface, or if the bean class
uses the session synchronization annotations.

4.6.2. Operations Allowed in the Methods of a Stateful Session Bean Class

Operations Allowed in the Methods of a Stateful Session Bean defines the methods of a stateful session
bean class from which the session bean instances can access the methods of the
jakarta.ejb.SessionContext interface, the java:comp/env environment naming context, resource

4.6. Stateful Session Beans

Final Jakarta® Enterprise Beans, Core Features 65

managers, Timer methods, the EntityManager and EntityManagerFactory methods, and other enterprise
beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and that access
is not allowed in Operations Allowed in the Methods of a Stateful Session Bean, the container must
throw the java.lang.IllegalStateException.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
manager or entity manager factory, and that access is not allowed in Operations Allowed in the
Methods of a Stateful Session Bean, the behavior is undefined by the Enterprise Beans architecture.

If a session bean instance attempts to invoke a method of the Timer interface and the access is not
allowed in Operations Allowed in the Methods of a Stateful Session Bean, the container must throw the
java.lang.IllegalStateException.

Table 1. Operations Allowed in the Methods of a Stateful Session Bean

Bean method Bean method can perform the following operations

Container-managed
transaction demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection methods
(e.g., setSessionContext)

SessionContext methods

getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

SessionContext methods

getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

PostConstruct, PreDestroy,
PrePassivate, PostActivate
lifecycle callback interceptor
methods Note A

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getRollbackOnly,
setRollbackOnly,
getCallerPrincipal,
isCallerInRole, getEJBObject,
getEJBLocalObject, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole, getEJBObject,
getEJBLocalObject,
getUserTransaction, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

4.6. Stateful Session Beans

66 Jakarta® Enterprise Beans, Core Features Final

Bean method Bean method can perform the following operations

business method from business
interface or from no-interface
view or from component
interface; business method
interceptor method

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
getRollbackOnly,
isCallerInRole,
setRollbackOnly, getEJBObject,
getEJBLocalObject,
getInvokedBusinessInterface,
wasCancelCalled, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer methods

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole, getEJBObject,
getEJBLocalObject,
getInvokedBusinessInterface,
wasCancelCalled,
getUserTransaction, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer methods

4.6. Stateful Session Beans

Final Jakarta® Enterprise Beans, Core Features 67

Bean method Bean method can perform the following operations

afterBegin
beforeCompletion

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
getRollbackOnly,
isCallerInRole,
setRollbackOnly, getEJBObject,
getEJBLocalObject, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer methods

N/A

(a bean with bean-managed
transaction demarcation cannot
implement the
SessionSynchronization
interface or use the session
synchronization annotations)

afterCompletion

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole, getEJBObject,
getEJBLocalObject, lookup,
getContextData

JNDI access to java:comp/env

Notes:
[A] If a client calls lifecycle callback method through a business interface or a no-interface view, the
method is treated like a business method.

Notes:

• The PostConstruct, PreDestroy, PrePassivate, PostActivate, and/or ejbCreate<METHOD>, ejbRemove,
ejbPassivate, and ejbActivate methods of a stateful session bean with container-managed
transaction demarcation are invoked in the scope of a transaction determined by the transaction
attribute specified in the bean’s metadata annotations or deployment descriptor.

• The Init methods of a session bean with container-managed transaction demarcation execute with
an unspecified transaction context. Refer to Handling of Methods that Run with "an unspecified
transaction context" for how the container executes methods with an unspecified transaction

4.6. Stateful Session Beans

68 Jakarta® Enterprise Beans, Core Features Final

context.

• In some cases, lifecycle callback interceptor methods initiated solely by the container without an
associated client invocation run in an unspecified security context, e.g., a PostConstruct method
callback invoked as a side-effect of the injection of a remote or local business interface reference.
However, the container is still required to permit client calls to these methods according to the
rules in this table (see note).

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the SessionContext interface should be used
only in the session bean methods that execute in the context of a transaction. The container must
throw the java.lang.IllegalStateException if the methods are invoked while the instance is not
associated with a transaction.

The reasons for disallowing the operations in Operations Allowed in the Methods of a Stateful Session
Bean follow:

• Invoking the getBusinessObject method is disallowed if the session bean does not define a business
interface or a no-interface view.

• Invoking the getInvokedBusinessInterface method is disallowed if the session bean does not define
a business interface or a no-interface view. It is also disallowed if the current business method was
not invoked through a business interface or the no-interface view.

• Invoking the getEJBObject and getEJBHome methods is disallowed if the session bean does not define
a remote component client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the session bean does
not define a local component client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the session bean
methods for which the container does not have a meaningful transaction context, and to all session
beans with bean-managed transaction demarcation.

• Accessing resource managers and enterprise beans is disallowed in the session bean methods for
which the container does not have a meaningful transaction context and/or client security context.

• The UserTransaction interface is unavailable to enterprise beans with container-managed
transaction demarcation.

• The TimerService interface is unavailable to stateful session beans.

• Invoking the getEJBObject and getEJBLocalObject methods is disallowed in the session bean
methods in which there is no session object identity established for the instance.

• Invoking the wasCancelCalled method is disallowed except when inside the context of the
asynchronous methods that declare Future<V> object as the returning type.

4.6. Stateful Session Beans

Final Jakarta® Enterprise Beans, Core Features 69

4.6.3. Dealing with Exceptions

A RuntimeException that is not an application exception thrown from any method of the stateful
session bean class (including the business methods and the lifecycle callback interceptor methods
invoked by the container) results in the transition to the "does not exist" state. Exception handling is
described in detail in Exception Handling. See the Jakarta Interceptors specification [15] for the rules
pertaining to lifecycle callback interceptor methods when more than one such method applies to the
bean class.

From the client perspective, the corresponding session object does not exist any more. If a client
subsequently attempts to invoke a method on the bean’s business interface or the no-interface view,
the container will throw the jakarta.ejb.NoSuchEJBException.[27] If the Enterprise Beans 2.1 client view
is used, the container will throw the java.rmi.NoSuchObjectException if the client is a remote client, or
the jakarta.ejb.NoSuchObjectLocalException if the client is a local client.

4.6.4. Missed PreDestroy Calls

The Bean Provider cannot assume that the container will always invoke the PreDestroy lifecycle
callback interceptor method(s) (or ejbRemove method) for a stateful session bean instance. The
following scenarios result in the PreDestroy lifecycle callback interceptor method(s) not being called
for an instance:

• A crash of the Enterprise Beans container.

• A system exception thrown from the instance’s method to the container.

• A timeout of client inactivity while the instance is in the passive state. The timeout is specified by
the Deployer in an Enterprise Beans container implementation-specific way.

If resources are allocated in a PostConstruct lifecycle callback interceptor method (or
ejbCreate<METHOD> method) and/or in the business methods, and normally released in a PreDestroy
lifecycle callback interceptor method, these resources will not be automatically released in the above
scenarios. The application using the stateful session bean should provide some clean up mechanism to
periodically clean up the unreleased resources.

For example, if a shopping cart component is implemented as a session bean, and the session bean stores
the shopping cart content in a database, the application should provide a program that runs periodically
and removes “abandoned” shopping carts from the database.

4.6.5. Disabling Passivation of Stateful Session Beans

By default, the container may passivate a stateful session bean instance to a secondary storage to save
resources. However, the Bean Provider can optionally configure the stateful session bean to prevent
passivation of its instances.

For example, a stateful session bean instance may contain non-serializable attributes which would lead to
runtime exceptions during passivation, or passivation and activation of such instances may cause

4.6. Stateful Session Beans

70 Jakarta® Enterprise Beans, Core Features Final

degradation of application performance.

If the passivationCapable element of the Stateful annotation is set to false or the passivation-capable
element of the session deployment descriptor element is set to false, the container must not attempt to
passivate instances of the bean.

Note: application server vendors may use passivation as a technique to provide high availability of
stateful session beans by replicating their state from one JVM instance to another across which the
container is distributed. In a failure situation, a stateful session bean is made available on a new JVM
instance by what is commonly called stateful session bean failover. If a container implementation
supports failover of stateful session beans using bean passivation, the failover capability for not
passivation capable stateful session beans is not defined.

4.6.6. Transaction Semantics of Initialization, Destruction, Activation and
Passivation

By default a stateful session bean’s PostConstruct, PreDestroy, PrePassivate and PostActivate methods
are executed in an unspecified transactional context. A PostConstruct, PreDestroy, PrePassivate and
PostActivate method of a stateful session bean with container-managed transaction demarcation is
permitted to have transaction attribute REQUIRES_NEW or NOT_SUPPORTED (RequiresNew or NotSupported if
the deployment descriptor is used to specify the transaction attribute).

4.6.7. Restrictions for Transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked
business methods. The restrictions are enforced by the container and must be observed by the client
programmer.

• A stateful session bean instance can participate in at most a single transaction at a time.

• If a stateful session bean instance is participating in a transaction, it is an error for a client to
invoke a method on the session object such that the transaction attribute specified in the bean’s
metadata annotations and/or the deployment descriptor would cause the container to execute the
method in a different transaction context or in an unspecified transaction context. In such a case,
the jakarta.ejb.EJBException will be thrown to a client of the bean’s business interface.[28] If the
Enterprise Beans 2.1 client view is used, the container throws the java.rmi.RemoteException to the
client if the client is a remote client, or the jakarta.ejb.EJBException if the client is a local client.

If a stateful session bean instance is participating in a transaction, it is an error for a client to invoke
the remove method on the session object’s home or component interface object. The container must
detect such an attempt and throw the jakarta.ejb.RemoveException to the client. The container should
not mark the client’s transaction for rollback, thus allowing the client to recover. Note that this
restriction only applies to the remove method on the session object’s home or component interface, not
to the invocation of Remove methods.

4.6. Stateful Session Beans

Final Jakarta® Enterprise Beans, Core Features 71

4.7. Stateless Session Beans
Stateless session beans are session beans whose instances have no conversational state. This means
that all bean instances are equivalent when they are not involved in servicing a client-invoked method.

The term "stateless" signifies that an instance has no state for a specific client. However, the instance
variables of the instance can contain the state across client-invoked method calls. Examples of such state
include an open database connection and an object reference to an enterprise bean object.

The Bean Provider must exercise caution if retaining any application state across method calls. In
particular, references to bean instance variables should not be returned through multiple local
interface method calls.

Because all instances of a stateless session bean are equivalent, the container can choose to delegate a
client-invoked method to any available instance. This means, for example, that the container may
delegate the requests from the same client within the same transaction to different instances, and that
the container may interleave requests from multiple transactions to the same instance.

A container only needs to retain the number of instances required to service the current client load.
Due to client "think time", this number is typically much smaller than the number of active clients.
Passivation is not needed or used for stateless session beans. The container creates another stateless
session bean instance if one is needed to handle an increase in client work load. If a stateless session
bean is not needed to handle the current client work load, the container can destroy it.

Because stateless session beans minimize the resources needed to support a large population of clients,
depending on the implementation of the container, applications that use stateless session beans may
scale somewhat better than those using stateful session beans. However, this benefit may be offset by
the increased complexity of the client application that uses the stateless beans.

There is no fixed mapping between clients and stateless instances. The container simply delegates a
client’s work to any available instance that is method-ready.

Compatability Note: Local and remote clients using the Enterprise Beans 2.1 client view interfaces use the
create and remove methods on the home interface of a stateless session bean in the same way as on a
stateful session bean. To the Enterprise Beans 2.1 client, it appears as if the client controls the life cycle of
the session object. However, the container handles the create and remove calls without necessarily
creating and removing an Enterprise Beans instance. The home interface of a stateless session bean must
have one create method that takes no arguments. The create method of the remote home interface must
return the session bean’s remote interface. The create method of the local home interface must return the
session bean’s local interface. There can be no other create methods in the home interface.

A stateless session bean must not implement the jakarta.ejb.SessionSynchronization interface or use
the session synchronization annotations.

4.7. Stateless Session Beans

72 Jakarta® Enterprise Beans, Core Features Final

4.7.1. Stateless Session Bean Lifecycle State Diagram

When a client calls a method on a stateless session object or invokes a method on a stateless session
bean through its web service client view, the container selects one of its method-ready instances and
delegates the method invocation to it.

The following figure illustrates the life cycle of a stateless session bean instance.

does not exist

1. AroundConstruct callbacks, if any
2. constructor
3. dependency injection, if any
4. PostConstruct callbacks, if any

method-ready pool
method

timeout callback method

PreDestroy callbacks, if any

method()

constructor

action initiated by client

action initiated by container

Figure 6. Life Cycle of a Stateless Session Bean

The following steps describe the life cycle of a stateless session bean instance:

• A stateless session bean instance’s life starts when the container invokes the session bean class
constructor to create a new session bean instance.[29] Next, the container performs any dependency
injection as specified by metadata annotations on the bean class or by the deployment descriptor.
The container then calls the PostConstruct lifecycle callback interceptor methods for the bean, if
any. The container can perform the instance creation at any time—there is no direct relationship to
a client’s invocation of a business method or the create method.

• The session bean instance is now ready to be delegated a business method call from any client or a
call from the container to a timeout callback method.

• When the container no longer needs the instance (usually when the container wants to reduce the
number of instances in the method-ready pool), the container invokes the PreDestroy lifecycle
callback interceptor methods for it, if any. This ends the life of the stateless session bean instance.

4.7.2. Operations Allowed in the Methods of a Stateless Session Bean Class

Operations Allowed in the Methods of a Stateless Session Bean defines the methods of a stateless
session bean class in which the session bean instances can access the methods of the

4.7. Stateless Session Beans

Final Jakarta® Enterprise Beans, Core Features 73

jakarta.ejb.SessionContext interface, the java:comp/env environment naming context, resource
managers, TimerService and Timer methods, the EntityManager and EntityManagerFactory methods, and
other enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and the access
is not allowed in Operations Allowed in the Methods of a Stateless Session Bean, the container must
throw the java.lang.IllegalStateException.

If a session bean instance attempts to invoke a method of the TimerService or Timer interface and the
access is not allowed in Operations Allowed in the Methods of a Stateless Session Bean, the container
must throw the java.lang.IllegalStateException.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
manager or entity manager factory, and the access is not allowed in Operations Allowed in the
Methods of a Stateless Session Bean, the behavior is undefined by the Enterprise Beans architecture.

Table 2. Operations Allowed in the Methods of a Stateless Session Bean

Bean method Bean method can perform the following operations

Container-managed
transaction demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injectionmethods
(e.g., setSessionContext)

SessionContext methods

getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

SessionContext methods

getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

PostConstruct, PreDestroy
lifecycle callback interceptor
methods Note A

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getEJBObject,
getEJBLocalObject,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
EntityManagerFactory access

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getEJBObject,
getEJBLocalObject,
getUserTransaction,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
EntityManagerFactory access

4.7. Stateless Session Beans

74 Jakarta® Enterprise Beans, Core Features Final

Bean method Bean method can perform the following operations

business method from business
interface or from no-interface
view or from component
interface; business method
interceptor method

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole,
getRollbackOnly,
setRollbackOnly, getEJBObject,
getEJBLocalObject,
getTimerService,
getInvokedBusinessInterface,
wasCancelCalled, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole, getEJBObject,
getEJBLocalObject,
getUserTransaction,
getTimerService,
getInvokedBusinessInterface,
wasCancelCalled, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

business method from web
service endpoint

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole,
getRollbackOnly,
setRollbackOnly, getEJBObject,
getEJBLocalObject,
getTimerService, lookup,
getContextData

Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole, getEJBObject,
getEJBLocalObject,
getUserTransaction,
getTimerService, lookup,
getContextData

UserTransaction methods
Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

4.7. Stateless Session Beans

Final Jakarta® Enterprise Beans, Core Features 75

Bean method Bean method can perform the following operations

timeout callback method

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole,
getRollbackOnly,
setRollbackOnly, getEJBObject,
getEJBLocalObject,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

SessionContext methods

getBusinessObject,
getEJBHome,
getEJBLocalHome,
getCallerPrincipal,
isCallerInRole, getEJBObject,
getEJBLocalObject,
getUserTransaction,
getTimerService, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

Notes:
[A] If a client calls lifecycle callback method through a business interface or a no-interface view, the
method is treated like a business method.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the SessionContext interface should be used
only in the session bean methods that execute in the context of a transaction. The container must
throw the java.lang.IllegalStateException if the methods are invoked while the instance is not
associated with a transaction.

The reasons for disallowing operations in Operations Allowed in the Methods of a Stateless Session
Bean:

• Invoking the getBusinessObject method is disallowed if the session bean does not define a business
interface or a no-interface view.

• Invoking the getInvokedBusinessInterface method is disallowed if the session bean does not define
a business interface or a no-interface view. It is also disallowed if the current business method was
not invoked through a business interface or the no-interface view.

• Invoking the getEJBObject and getEJBHome methods is disallowed if the session bean does not define
a remote component client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the session bean does

4.7. Stateless Session Beans

76 Jakarta® Enterprise Beans, Core Features Final

not define a local component client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the session bean
methods for which the container does not have a meaningful transaction context, and for all
session beans with bean-managed transaction demarcation.

• Accessing resource managers, enterprise beans, and the EntityManager is disallowed in the session
bean methods for which the container does not have a meaningful transaction context and/or
client security context.

• The UserTransaction interface is unavailable to session beans with container-managed transaction
demarcation.

• Invoking the wasCancelCalled method is disallowed except when inside the context of the
asynchronous methods that declare Future<V> object as the returning type.

4.7.3. Dealing with Exceptions

A RuntimeException that is not an application exception thrown from any method of the enterprise
bean class (including the business methods and the lifecycle callback interceptor methods invoked by
the container) results in the transition to the "does not exist" state. Exception handling is described in
detail in Exception Handling. See the Jakarta Interceptors specification [15] for the rules pertaining to
lifecycle callback interceptor methods when more than one such method applies to the bean class.

From the client perspective, the session object continues to exist. The client can continue accessing the
session object because the container can delegate the client’s requests to another instance.

4.8. Singleton Session Beans
A singleton session bean is a session bean component that is instantiated once per application. In cases
where the container is distributed over many virtual machines, each application will have one bean
instance of the singleton for each JVM.

Once instantiated, a singleton session bean instance lives for the duration of the application in which it
is created. It maintains its state between client invocations but its state is not required to survive
container shutdown or crash.

A singleton session bean is intended to be shared, and it supports concurrent access.

A singleton session bean must not implement the jakarta.ejb.SessionSynchronization interface or use
the session synchronization annotations.

4.8. Singleton Session Beans

Final Jakarta® Enterprise Beans, Core Features 77

does not exist

1. AroundConstruct callbacks, if any
2. constructor
3. dependency injection, if any
4. PostConstruct callbacks, if any

method ready
method

timeout callback method

PreDestroy callbacks, if any

method()

constructor

action initiated by client

action initiated by container

Figure 7. Life Cycle of a Singleton Session Bean

The following steps describe the life cycle of a singleton session bean instance:

• A singleton session bean instance’s life starts when the container invokes the session bean class
constructor to create the singleton bean instance.[30] Next, the container performs any dependency
injection as specified by the metadata annotations on the bean class or by the deployment
descriptor. The container then calls the PostConstruct lifecycle callback interceptor methods for the
bean, if any.

• The singleton bean instance is now ready to be delegated a business method call from any client or
a call from the container to a timeout callback method.

• When the application is shutting down, the container invokes the PreDestroy lifecycle callback
interceptor methods on the singleton session bean instance, if any. This ends the life of the
singleton session bean instance.

4.8.1. Singleton Session Bean Initialization

By default, the container is responsible for deciding when to initialize a singleton session bean
instance. However, the Bean Provider can optionally configure the singleton session bean for eager
initialization. If the Startup annotation appears on the singleton session bean class or if the singleton
session bean has been designated via the deployment descriptor as requiring eager initialization, the
container must initialize the singleton session bean instance during the application startup sequence.
The container must initialize all such startup-time singleton session beans before any external client
requests (that is, client requests originating outside of the application) are delivered to any enterprise
bean components in the application.

The following example shows a singleton session bean with startup logic that initializes its shared

4.8. Singleton Session Beans

78 Jakarta® Enterprise Beans, Core Features Final

state:

@Startup
@Singleton
public class SharedBean implements Shared {

 private SharedData state;

 @PostConstruct
 void init() {
 // initialize shared data
 ...
 }
 ...
}

In some cases, explicit initialization ordering dependencies exist between multiple singleton session
bean components in an application. The DependsOn annotation is used to express these dependencies. A
DependsOn dependency is used in cases where one singleton session bean must initialize before one or
more other singleton session beans. The container ensures that all singleton session beans with which
a singleton session bean has a DependsOn relationship have been initialized before the PostConstruct
method is called.

Note that if one singleton session bean merely needs to invoke another singleton session bean from its
PostConstruct method, no explicit ordering metadata is required. In that case, the first singleton
session bean would merely use an Enterprise Beans reference to invoke the target singleton session
bean. In this case, the acquisition of the Enterprise Beans reference (either through injection or
lookup) does not necessarily imply the actual creation of the corresponding singleton session bean
instance.

The following examples illustrate the use of DependsOn metadata:

@Singleton
public class B { ... }

@DependsOn("B")
@Singleton
public class A { ... }

In the above example, the container must guarantee that singleton B is initialized before singleton A.
The DependsOn value attribute holds one or more strings, where each specifies the ejb-name of the target
singleton session bean.

In the following example, the container must guarantee that singletons B and C are initialized before
singleton A. In the case of multiple values, the ordering in which the target ejb-name values are listed is

4.8. Singleton Session Beans

Final Jakarta® Enterprise Beans, Core Features 79

not preserved at runtime. For example, if singleton B has an ordering dependency on singleton C, it is
singleton B’s responsibility to explicitly capture that in its own metadata.

@Singleton
public class B { ... }

@Singleton(name="Cbean")
public class C { ... }

@DependsOn({"B", "Cbean"})
@Singleton
public class A { ... }

The following example illustrates the use of the fully-qualified ejb-name syntax to refer to a singleton
session bean packaged within a different module in the same application.

// two Singleton components packaged in different ejb-jars within
// the same .ear

// packaged in b.jar
@Singleton
public class B { ... }

// packaged in a.jar
@DependsOn("b.jar#B")
@Singleton
public class A { ... }

Circular dependencies within the DependsOn metadata are not permitted. Circular dependencies are not
required to be detected by the container but may result in a deployment error.

4.8.2. Singleton Session Bean Destruction

Any singleton session bean instance that successfully completes initialization is removed by the
container during application shutdown. At this time the container must invoke the PreDestroy lifecycle
callback interceptor methods on the singleton session bean instance, if any. The container ensures that
all singleton session beans with which a singleton session bean has a DependsOn relationship are still
available during the PreDestroy callback. After the PreDestroy callback completes, the container ends
the life of the singleton session bean instance.

4.8.3. Transaction Semantics of Initialization and Destruction

The PostConstruct and PreDestroy methods of singleton session beans with container-managed
transaction demarcation can be invoked with or without a transaction. From the Bean Provider’s view

4.8. Singleton Session Beans

80 Jakarta® Enterprise Beans, Core Features Final

there is no client of a PostConstruct or PreDestroy method.

A PostConstruct or PreDestroy method of a singleton session bean with container-managed transaction
demarcation is permitted to have transaction attribute REQUIRED, REQUIRES_NEW, or NOT_SUPPORTED
(Required, RequiresNew, or NotSupported if the deployment descriptor is used to specify the transaction
attribute).

Note that the container must start a new transaction if the REQUIRED (Required) transaction attribute is
used. This guarantees, for example, that the transactional behavior of the PostConstruct method is the
same regardless of whether the singleton session bean instance is initialized eagerly at container startup
time or as a side effect of a first client invocation on the singleton session bean. The REQUIRED transaction
attribute value is allowed so that specification of a transaction attribute for the singleton session bean’s
PostConstruct and PreDestroy methods can be defaulted.

4.8.4. Singleton Session Bean Error Handling

Errors occurring during singleton session bean initialization are considered fatal and must result in
the discarding of the singleton session bean instance. Possible initialization errors include injection
failure, a system exception thrown from an AroundConstruct or PostConstruct method, or the failure of
a PostConstruct method’s container-managed transaction to successfully commit. If a singleton session
bean fails to initialize, attempted invocations on the singleton session bean result in the
jakarta.ejb.NoSuchEJBException exception as defined by Session Bean’s Business Interface and Session
Bean’s No-Interface View.

The same singleton session bean instance must remain active until application shutdown. Unlike
instances of other component types, system exceptions thrown from business methods or callbacks of
a singleton session bean do not result in the destruction of the singleton instance.

4.8.5. Singleton Session Bean Concurrency

From the client’s perspective, a singleton session bean always supports concurrent access. In general,
the client of a singleton session bean does not have to concern itself with whether other clients might
be accessing the singleton session bean at the same time.

From the Bean Provider’s perspective, there are two approaches for controlling singleton session bean
concurrency behavior:

• container-managed concurrency: the container controls concurrent access to the bean instance
based on method-level locking metadata

• bean-managed concurrency: the container allows full concurrent bean instance access and defers
state synchronization responsibility to the Bean Provider

When designing a singleton session bean, the bean provider must decide whether the bean will use
container-managed or bean-managed concurrency. Typically singleton session beans will be specified
to have container-managed concurrency. This is the default if no concurrency management type is
specified. A singleton session bean can be designed to use either container-managed concurrency or

4.8. Singleton Session Beans

Final Jakarta® Enterprise Beans, Core Features 81

bean-managed concurrency but it cannot use both.

The lifecycle of any interceptor classes associated with a singleton session bean have the same lifecycle
and concurrency behavior as that of the singleton session bean itself. Each interceptor class will be
instantiated once per singleton session bean instance. Any state stored in an instance of an interceptor
class associated with a singleton session bean should be considered when devising the concurrency
plan for the bean.

It is legal to store Jakarta EE objects that do not support concurrent access (e.g. references to Jakarta
Persistence entity managers or stateful session beans) within the singleton session bean instance state.
However, it is the responsibility of the Bean Provider to ensure such objects are not accessed by more
than one thread at a time.

Independent of the bean’s concurrency management type, the container must ensure that no
concurrent access to the singleton session bean instance occurs until after the instance has successfully
completed its initialization sequence, including any PostConstruct lifecycle callback method(s). The
container must temporarily block any singleton session bean access attempts that arrive while the
singleton session bean is still initializing.

Independent of the bean’s concurrency management type, the container must ensure that concurrent
access to the SessionContext object is thread-safe.

Singleton session beans support reentrant calls, i.e., where an outbound call from a singleton session
bean method results in a loopback call to the singleton session bean on the same thread. Reentrant
singleton session beans should be programmed and used with caution. Special locking semantics apply
to loopback calls on singleton session beans with container-managed concurrency as described below.

4.8.5.1. Container-Managed Concurrency

With container-managed concurrency, the container is responsible for controlling concurrent access to
the bean instance based on method-level locking metadata. Each business method or timeout method
is associated with either a read (shared) lock or a write (exclusive) lock.

If the container invokes a method associated with a read lock, any number of other concurrent
invocations on methods with read locks are allowed to access the bean instance simultaneously.

If the container invokes a method associated with a write lock, no other concurrent invocations will be
allowed to proceed until the method holding the write lock completes its processing.

A concurrent access attempt that is not allowed to proceed due to locking is blocked until it can make
forward progress. Timeouts can be specified via metadata so that a blocked request can be rejected if a
lock is not acquired within a certain amount of time. If a singleton session bean invocation is rejected
due to lock timeout the ConcurrentAccessTimeoutException is thrown to the client.

This specification only mandates the basic read and write locking semantics outlined above. There are
many policy decisions that a container could make to affect the performance of the locking scheme for
a given application. For example:

4.8. Singleton Session Beans

82 Jakarta® Enterprise Beans, Core Features Final

• Determining whether to grant forward progress to a read method or write method, when both
readers and writers are waiting at the time that a write method completes.

• Determining whether to allow additional readers while one or more readers is active and a writer
is waiting.

The exact set of additional read/write locking policy decisions supported by a Container Provider and
the configuration requirements for those policies are outside the scope of this specification.

Reentrant Locking Behavior

Special locking semantics apply to loopback calls on singleton session beans with container-managed
concurrency.

If a loopback call occurs on a singleton session bean that already holds a write lock on the same
thread:

• If the target of the loopback call is a read method, the read lock must always be granted
immediately, without releasing the original write lock.

• If the target of the loopback call is a write method, the call must proceed immediately, without
releasing the original write lock.

If a loopback call occurs on a singleton session bean that holds a read lock on the same thread (but
does not also hold a write lock on the same thread):

• If the target of the loopback call is a read method, the call must proceed immediately, without
releasing the original Read lock.

• If the target of the loopback call is a write method, the jakarta.ejb.IllegalLoopbackException must
be thrown to the caller.

4.8.5.2. Bean-Managed Concurrency

With bean-managed concurrency, the container allows full concurrent access to the singleton session
bean instance. It is the responsibility of the Bean Provider to guard its state as necessary against
synchronization errors due to concurrent access. The Bean Provider is permitted to use the Java
language level synchronization primitives such as synchronized and volatile for this purpose.

4.8.5.3. Specification of a Concurrency Management Type

By default, a singleton session bean has container-managed concurrency. The Bean Provider of a
singleton session bean can use the ConcurrencyManagement annotation on the bean class to declare the
bean’s concurrency management type.

Alternatively, the Bean Provider can use the deployment descriptor to specify the bean’s concurrency
management type. If the deployment descriptor is used, it is only necessary to explicitly specify the
bean’s concurrency management type if bean-managed concurrency is used.

4.8. Singleton Session Beans

Final Jakarta® Enterprise Beans, Core Features 83

The concurrency management type of a singleton session bean is determined by the Bean Provider.
The Application Assembler is not permitted to use the deployment descriptor to override a bean’s
concurrency management type regardless of whether it has been explicitly specified or defaulted by
the Bean Provider. (See Deployment Descriptor for information about the deployment descriptor.)

4.8.5.4. Specification of the Container-Managed Concurrency Metadata for a Bean’s Methods

The Bean Provider of a singleton session bean with container-managed concurrency may specify
locking metadata for the enterprise bean’s methods. By default, the value of the lock associated with a
method of a bean with container managed concurrency is a write lock (exclusive lock).

A concurrency locking attribute is a value associated with each of the following methods:

• a method of a bean’s business interface

• a method of a bean’s no-interface view

• a timeout callback method

• a web service endpoint method

The concurrency locking attribute specifies how the container must manage concurrency when a
client invokes the method.

Concurrency locking attributes are specified for the following methods:

• For a bean written to the Enterprise Beans 3.x client view API, the concurrency locking attributes
are specified for those methods of the bean class that correspond to the bean’s business interface,
the direct and indirect superinterfaces of the business interface, methods exposed through the no-
interface view, and for timeout callback methods, if any.

• For a bean that provides a web service client view, the concurrency locking attributes are specified
for those methods of the bean class that correspond to the bean’s web service endpoint methods,
and for timeout callback methods, if any.

The following rules apply to the specification of concurrency attributes.

The Lock(READ) and Lock(WRITE) annotations are used to specify concurrency locking attributes.

The concurrency locking attributes for the methods of a bean class may be specified on the class, the
business methods of the class, or both.

Specifying the Lock annotation on the bean class means that it applies to all applicable business
methods of the class. If the concurrency locking attribute is not specified, it is assumed to be
Lock(WRITE). The absence of a concurrency attribute specification on the bean class is equivalent to the
specification of Lock(WRITE) on the bean class.

A concurrency locking attribute may be specified on a method of the bean class to override the
concurrency locking attribute value explicitly or implicitly specified on the bean class.

4.8. Singleton Session Beans

84 Jakarta® Enterprise Beans, Core Features Final

If the bean class has superclasses, the following additional rules apply:

• A concurrency locking attribute specified on a superclass S appplies to the business methods
defined by S. If a class-level concurrency attribute is not specified on S, it is equivalent to
specification of Lock(WRITE) on S.

• A concurrency locking attribute may be specified on a business method M defined by class S to
override for method M the concurrency locking attribute value explicitly or implicitly specified on
the class S.

• If a method M of class S overrides a business method defined by a superclass of S, the concurrency
locking attribute of M is determined by the above rules as applied to class S.

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to
specify the concurrency locking attributes. Concurrency locking attributes specified in the deployment
descriptor are assumed to override or supplement concurrency locking attributes specified in
annotations. If a concurrency locking attribute value is not specified in the deployment descriptor, it is
assumed that the concurrency locking attribute specified in annotations applies, or — in the case that
no annotation has been specified —that the value is Write.

The Application Assembler is permitted to override the concurrency locking attribute values using the
bean’s deployment descriptor. The Deployer is also permitted to override the concurrency locking
attribute values at deployment time. Caution should be exercised when overriding the concurrency
locking attributes of an application, as the concurrency structure of an application is typically intrinsic
to the semantics of the application.

Example:

@Lock(READ)
public class SomeClass {
 public void aMethod () { ... }
 public void bMethod () { ... }
 ...
}

@Singleton
public class ABean extends SomeClass implements A {

 public void aMethod () { ... }

 @Lock(WRITE)
 public void cMethod () { ... }
 ...
}

Assuming that aMethod, bMethod, cMethod of singleton session bean ABean are methods of business
interface A, their concurrency locking attributes are Lock(WRITE), Lock(READ), and Lock(WRITE)

4.8. Singleton Session Beans

Final Jakarta® Enterprise Beans, Core Features 85

respectively.

4.8.5.5. Concurrent Access Timeouts

A concurrent access attempt that cannot immediately acquire the appropriate lock is blocked until it
can make forward progress. The AccessTimeout annotation is used to specify the amount of time the
access attempt should be blocked before timing out. Access timeouts only apply to methods eligible for
concurrency locks on a singleton session bean with container-managed concurrency. If an access
attempt times out, the container throws the jakarta.ejb.ConcurrentAccessTimeoutException to the client.

The AccessTimeout annotation can be specified on a business method or on a bean class (or superclass).
An AccessTimeout annotation specified on a class applies the access timeout to all business methods of
that class. If the AccessTimeout annotation is specified on both a class and on a business method of that
class, the method-level annotation takes precedence.

An AccessTimeout value of -1 indicates that the client request will block indefinitely until forward
progress can be made.

An AccessTimeout value of 0 indicates that concurrent access is not allowed. Access attempts on
methods with a timeout value of 0 result in the jakarta.ejb.ConcurrentAccessException.

4.8.6. Operations Allowed in the Methods of a Singleton Session Bean

Operations Allowed in the Methods of a Singleton Session Bean defines the methods of a singleton
session bean class in which the session bean instances can access the methods of the
jakarta.ejb.SessionContext interface, the java:comp/env environment naming context, resource
managers, TimerService and Timer methods, the EntityManager and EntityManagerFactory methods, and
other enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and the access
is not allowed in Operations Allowed in the Methods of a Singleton Session Bean, the container must
throw the java.lang.IllegalStateException.

If a session bean instance attempts to invoke a method of the TimerService or Timer interface and the
access is not allowed in Operations Allowed in the Methods of a Singleton Session Bean, the container
must throw the java.lang.IllegalStateException.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
manager or entity manager factory, and the access is not allowed in Operations Allowed in the
Methods of a Singleton Session Bean, the behavior is undefined by the Enterprise Beans architecture.

Table 3. Operations Allowed in the Methods of a Singleton Session Bean

Bean method Bean method can perform the following operations

Container-managed
transaction demarcation

Bean-managed transaction
demarcation

4.8. Singleton Session Beans

86 Jakarta® Enterprise Beans, Core Features Final

Bean method Bean method can perform the following operations

constructor - -

dependency injection methods

SessionContext methods

lookup

JNDI access to java:comp/env

SessionContext methods

lookup

JNDI access to java:comp/env

PostConstruct, PreDestroy
lifecycle callback interceptor
methods Note A

SessionContext methods

getBusinessObject,
getRollbackOnly,
setRollbackOnly,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

SessionContext methods

getBusinessObject,
getUserTransaction,
getTimerService, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManager access
EntityManagerFactory access
TimerService and Timer
methods

business method from business
interface or from no-interface
view; business method
interceptor method

SessionContext methods

getBusinessObject,
getCallerPrincipal,
isCallerInRole,
getRollbackOnly,
setRollbackOnly,
getTimerService,
getInvokedBusinessInterface,
wasCancelCalled, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

SessionContext methods

getBusinessObject,
getCallerPrincipal,
isCallerInRole,
getUserTransaction,
getTimerService,
getInvokedBusinessInterface,
wasCancelCalled, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

4.8. Singleton Session Beans

Final Jakarta® Enterprise Beans, Core Features 87

Bean method Bean method can perform the following operations

business method from web
service endpoint

SessionContext methods

getBusinessObject,
getCallerPrincipal,
isCallerInRole,
getRollbackOnly,
setRollbackOnly,
getTimerService, lookup,
getContextData

Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

SessionContext methods

getBusinessObject,
getCallerPrincipal,
isCallerInRole,
getUserTransaction,
getTimerService, lookup,
getContextData

UserTransaction methods
Message context methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

timeout callback method

SessionContext methods

getBusinessObject,
getCallerPrincipal,
isCallerInRole,
getRollbackOnly,
setRollbackOnly,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

SessionContext methods

getBusinessObject,
getCallerPrincipal,
isCallerInRole,
getUserTransaction,
getTimerService, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
TimerService and Timer
methods

Notes:
[A] If a client calls lifecycle callback method through a business interface or a no-interface view, the
method is treated like a business method.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the SessionContext interface should be used
only in the session bean methods that execute in the context of a transaction. The container must

4.8. Singleton Session Beans

88 Jakarta® Enterprise Beans, Core Features Final

throw the java.lang.IllegalStateException if the methods are invoked while the current business
method is not executing in the context of a transaction.

• Invoking the wasCancelCalled method is disallowed except when inside the context of the
asynchronous methods that declare Future<V> object as the returning type

The reasons for disallowing operations in Operations Allowed in the Methods of a Singleton Session
Bean:

• Invoking the getBusinessObject method is disallowed if the session bean does not define a business
interface or a no-interface view.

• Invoking the getInvokedBusinessInterface method is disallowed if the session bean does not define
a business interface or a no-interface view. It is also disallowed if the current business method was
not invoked through a business interface or the no-interface view.

• Invoking the getEJBObject and getEJBHome methods is disallowed since a singleton session bean does
not support the Enterprise Beans 2.x remote client view.

• Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed since a singleton session
bean does not support the Enterprise Beans 2.x local client view.

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the session bean
methods for which the container does not have a meaningful transaction context, and for all
session beans with bean-managed transaction demarcation.

• Accessing resource managers, enterprise beans, and the EntityManager is disallowed in the session
bean methods for which the container does not have a meaningful transaction context and/or
client security context.

• The UserTransaction interface is unavailable to session beans with container-managed transaction
demarcation.

4.9. The Responsibilities of the Bean Provider
This section describes the responsibilities of the session Bean Provider to ensure that a session bean
can be deployed in any Enterprise Beans container. These requirements apply to stateful session
beans, stateless session beans, and singleton session beans.

4.9.1. Classes and Interfaces

The session Bean Provider is responsible for providing the following class files:[31]

• Session bean class.

• Session bean’s business interface(s), if the session bean provides an Enterprise Beans 3.x local or
remote client view.

• Session bean’s remote interface and remote home interface, if the session bean provides an
Enterprise Beans 2.1 remote client view.

4.9. The Responsibilities of the Bean Provider

Final Jakarta® Enterprise Beans, Core Features 89

• Session bean’s local interface and local home interface, if the session bean provides an Enterprise
Beans 2.1 local client view.

• Session bean’s web service endpoint interface, if any.

• Interceptor classes, if any.

The Bean Provider for a session bean that provides a web service client view may also define Jakarta
XML Web Services message handlers for the bean. The requirements for such message handlers are
defined in [5] and [4].

4.9.2. Session Bean Class

The following are the requirements for the session bean class:

• The class must be defined as public, must not be final, and must not be abstract. The class must be
a top level class.

• The class must have a public constructor that takes no parameters. The Enterprise Beans container
uses this constructor to create instances of the session bean class.

• The class must not define the finalize() method.

• The class must implement the bean’s business interface(s) or the methods of the bean’s business
interface(s), if any.

• The class must implement the business methods of the bean’s Enterprise Beans 2.1 client view
interfaces, if any. [32]

Optionally:

• The class may have an additional constructor annotated with the Inject annotation (see
Relationship to Jakarta Contexts and Dependency Injection and the CDI specification [8]).

• The class may implement, directly or indirectly, the jakarta.ejb.SessionBean interface.[33]

• If the class is a stateful session bean, it may implement the jakarta.ejb.SessionSynchronization
interface or use one or more of the session synchronization annotations.

• The class may implement the session bean’s web service endpoint or component interface.

• If the class is a stateless session bean, it may implement the jakarta.ejb.TimedObject interface. See
Timer Service.

• The class may implement the ejbCreate method(s).

• The session bean class may have superclasses and/or superinterfaces. If the session bean has
superclasses, the business methods, lifecycle callback interceptor methods, the timeout callback
methods, the methods implementing the optional session synchronization notifications, the Init or
ejbCreate<METHOD> methods, the Remove methods, and the methods of the SessionBean interface may
be defined in the session bean class or in any of its superclasses.

• The session bean class is allowed to implement other methods (for example helper methods
invoked internally by the business methods) in addition to the methods required by the Enterprise

4.9. The Responsibilities of the Bean Provider

90 Jakarta® Enterprise Beans, Core Features Final

Beans specification.

4.9.2.1. Session Bean Superclasses

A session bean class is permitted to have superclasses that are themselves session bean classes.
However, there are no special rules that apply to the processing of annotations or the deployment
descriptor for this case. For the purposes of processing a particular session bean class, all superclass
processing is identical regardless of whether the superclasses are themselves session bean classes. In
this regard, the use of session bean classes as superclasses merely represents a convenient use of
implementation inheritance, but does not have component inheritance semantics.

For example, the client views exposed by a particular session bean are not inherited by a subclass that
also happens to define a session bean.

@Stateless
public class A implements Foo { ... }

@Stateless
public class B extends A implements Bar { ... }

Assuming Foo and Bar are local business interfaces and there is no associated deployment descriptor,
session bean A exposes local business interface Foo and session bean B exposes local business interface
Bar, but not Foo.

Session bean B would need to explicitly include Foo in its set of exposed views for that interface to
apply. For example:

@Stateless
public class A implements Foo { ... }

@Stateless
public class B extends A implements Foo, Bar { ... }

4.9.3. Lifecycle Callback Interceptor Methods

The AroundConstruct, PostConstruct, PreDestroy, PrePassivate, and PostActivate lifecycle callback
interceptor methods may be defined for session beans. If the PrePassivate or PostActivate lifecycle
callbacks are defined for stateless session beans or singleton session beans, they are ignored.[34]

The AroundConstruct lifecycle callback interceptor method may be defined on an interceptor class only.
All other lifecycle callback interceptor methods may be defined on the bean class and/or on an
interceptor class of the bean. Rules applying to the definition of lifecycle callback interceptor methods
are defined in Interceptors for LifeCycle Event Callbacks.

4.9. The Responsibilities of the Bean Provider

Final Jakarta® Enterprise Beans, Core Features 91

Compatibility Note: If the PostConstruct lifecycle callback interceptor method is the ejbCreate method, if
the PreDestroy lifecycle callback interceptor method is the ejbRemove method, if the PostActivate lifecycle
callback interceptor method is the ejbActivate method, or if the PrePassivate lifecycle callback
interceptor method is the ejbPassivate method, these callback methods must be implemented on the bean
class itself (or on its superclasses). Except for these cases, the method names can be arbitrary, but must
not start with "ejb" to avoid conflicts with the callback methods defined by the
jakarta.ejb.EnterpriseBean interfaces.

4.9.4. Session Synchronization Methods

The bean class (or superclass) of a stateful session bean may use one or more of the session
synchronization annotations AfterBegin, BeforeCompletion, and AfterCompletion. Each bean has at most
one session synchronization method for each of the three annotation types. In the case of method
overriding of session synchronization methods declared by annotations, the most derived method
takes precedence. The signatures of the session synchronization methods must follow these rules:

• The method must not be declared as final or static.

• The method may have any access type: public, private, protected, or package-level.

• The return type must be void.

• The AfterBegin and BeforeCompletion methods must take 0 arguments.

• The AfterCompletion method must take a single argument of type boolean.

4.9.5. ejbCreate<METHOD> Methods

The session bean class of a session bean that has a home interface may define one or more
ejbCreate<METHOD> methods. These ejbCreate methods are intended for use only with components
written to the the Enterprise Beans 2.1 and earlier APIs. The signatures of the ejbCreate methods must
follow these rules:

• The method name must have ejbCreate as its prefix.

• The method must be declared as public.

• The method must not be declared as final or static.

• The return type must be void.

• The method arguments must be legal types for RMI/IIOP if there is a create<METHOD> corresponding
to the ejbCreate<METHOD> method on the session bean’s remote home interface.

• A stateless session bean may define only a single ejbCreate method, with no arguments.

• The throws clause may define arbitrary application exceptions, possibly including the
jakarta.ejb.CreateException.

Compatibility Note: Enterprise Beans 1.0 allowed the ejbCreate method to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1— an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean

4.9. The Responsibilities of the Bean Provider

92 Jakarta® Enterprise Beans, Core Features Final

should throw the jakarta.ejb.EJBException or another RuntimeException to indicate non-application
exceptions to the container (see System Exceptions). An Enterprise Beans 2.0 and later compliant
enterprise bean should not throw the java.rmi.RemoteException from the ejbCreate method.

4.9.6. Business Methods

The session bean class may define zero or more business methods whose signatures must follow these
rules:

• The method names can be arbitrary, but they must not start with "ejb" to avoid conflicts with the
callback methods used by the Enterprise Beans architecture.

• The method must be declared as public.

• The method must not be declared as final or static.

• The argument and return value types for the method must be legal types for RMI/IIOP if the
method corresponds to a business method on the session bean’s remote business interface or
remote component interface.

• The argument and return value types for a method must be legal types for Jakarta XML Web
Services if the method is a web service method or corresponds to a method on the session bean’s
web service endpoint.

• The throws clause may define arbitrary application exceptions.

Note: Callback methods are permitted to have public access type. This raises the question of
whether a callback method can also be exposed as a business method through one or more client
views. Doing so is not prohibited, but should be done with caution. The runtime context (e.g.
transaction context, caller principal, operations allowed, etc.) for a method invoked as a callback
can differ significantly from the context for the same method when invoked via a client invocation.
As a general rule, callback methods should not be exposed as business methods. Therefore, it is
recommended that all non-business methods be assigned an access type other than public.

Compatibility Note: Enterprise Beans 1.0 allowed the business methods to throw the
java.rmi.RemoteException to indicate a non-application exception. This practice was deprecated in
Enterprise Beans 1.1— an Enterprise Beans 1.1 or Enterprise Beans 2.0 or later compliant enterprise bean
should throw the jakarta.ejb.EJBException or another RuntimeException to indicate non-application
exceptions to the container (see System Exceptions). An Enterprise Beans 2.0 or later compliant enterprise
bean should not throw the java.rmi.RemoteException from a business method.

4.9.7. Session Bean’s Business Interface

The following are the requirements for the session bean’s business interface:

• The interface must not extend the jakarta.ejb.EJBObject or jakarta.ejb.EJBLocalObject interface.

4.9. The Responsibilities of the Bean Provider

Final Jakarta® Enterprise Beans, Core Features 93

If the business interface is a remote business interface, the argument and return values must be of
valid types for RMI/IIOP. The remote business interface is not required or expected to be a
java.rmi.Remote interface. The throws clause should not include the java.rmi.RemoteException. The
methods of the business interface may only throw the java.rmi.RemoteException if the interface extends
java.rmi.Remote.

• The interface is allowed to have superinterfaces.

• If the interface is a remote business interface, its methods must not expose local interface types,
timers or timer handles as arguments or results.

• The same business interface cannot be both a local and a remote business interface of the bean.[35]

• The bean class must implement the interface or the interface must be designated as a local or
remote business interface of the bean by means of the Local or Remote annotation or in the
deployment descriptor. The following rules apply to the interfaces implemented by the bean class:

◦ java.io.Serializable, java.io.Externalizable and the interfaces defined by the jakarta.ejb
package are excluded when determining whether the bean class has business interfaces.

◦ All business interfaces must be explicitly designated as such if any of the following is true:

▪ the bean exposes a no-interface view

▪ any interface of the bean class is explicitly designated as a business interface of the bean by
either of the following means:

▪ using the Local or Remote annotation with a non-empty value on the bean class

▪ using the Local or Remote annotation on the interface

▪ in the deployment descriptor

▪ Otherwise:

▪ If the bean class is annotated with the Remote annotation, all implemented interfaces
(excluding the interfaces listed above) are assumed to be remote business interfaces of
the bean.

▪ If the bean class is annotated with the Local annotation, or if the bean class is annotated
with neither the Local nor the Remote annotation, all implemented interfaces (excluding
the interfaces listed above) are assumed to be local business interfaces of the bean.

Note that while it is expected that the bean class will typically implement its business interface(s), if the
bean class uses annotations or the deployment descriptor to designate its business interface(s), it is not
required that the bean class also be specified as implementing the interface(s).

The following examples assume that there is no deployment descriptor associated with the bean and
neither the Local nor the Remote annotation is specified on the bean class or an interface unless noted.

Example 1: session bean A exposes two local business interfaces, Foo and Bar:

4.9. The Responsibilities of the Bean Provider

94 Jakarta® Enterprise Beans, Core Features Final

public interface Foo { ... }

public interface Bar { ... }

@Stateless
public class A implements Foo, Bar { ... }

Example 2: session bean A exposes two local business interfaces, Foo and Bar:

public interface Foo { ... }

public interface Bar { ... }

@Local
@Stateless
public class A implements Foo, Bar { ... }

Example 3: session bean A exposes two remote business interfaces, Foo and Bar

public interface Foo { ... }

public interface Bar { ... }

@Remote
@Stateless
public class A implements Foo, Bar { ... }

Example 4: session bean A exposes only one remote business interface Foo

@Remote
public interface Foo { ... }

public interface Bar { ... }

@Stateless
public class A implements Foo, Bar { ... }

Example 5: session bean A exposes only one remote business interface Foo

4.9. The Responsibilities of the Bean Provider

Final Jakarta® Enterprise Beans, Core Features 95

public interface Foo { ... }

public interface Bar { ... }

@Remote(Foo.class)
@Stateless
public class A implements Foo, Bar { ... }

4.9.8. Session Bean’s No-Interface View

The following are the requirements for a session bean that exposes a no-interface view:

• The bean class must designate that it exposes a no-interface view via its bean class definition or in
the deployment descriptor. The following rules apply:

◦ If the bean does not expose any other client views (local, remote, no-interface, 2.x Remote
Home, 2.x Local Home, Web Service) and its implements clause is empty, the bean defines a no-
interface view.

◦ If the bean exposes at least one other client view, the bean designates that it exposes a no-
interface view by means of the LocalBean annotation on the bean class or in the deployment
descriptor.

◦ The following interfaces are excluded when determining whether the bean exposes a no-
interface view: java.io.Serializable; java.io.Externalizable; any of the interfaces defined by
the jakarta.ejb package.

◦ All non-static public methods of the bean class and of any superclasses except java.lang.Object
are exposed as business methods through the no-interface view.

Note: This includes callback methods. The Bean Provider should exercise caution when choosing to
expose callback methods as business methods through the no-interface view. The runtime context
(e.g. transaction context, caller principal, operations allowed, etc.) for a method invoked as a
callback can differ significantly from the context for the same method when invoked via a client
invocation. In general, callback methods should not be exposed as business methods. Therefore, it is
recommended that all non-business methods be assigned an access type other than public.

• The throws clause of a bean class method exposed through the no-interface view must not include
the java.rmi.RemoteException.

• Only private methods of the bean class and any superclasses except java.lang.Object may be
declared final.

4.9.9. Session Bean’s Remote Component Interface

The following are the requirements for the session bean’s remote component interface:

4.9. The Responsibilities of the Bean Provider

96 Jakarta® Enterprise Beans, Core Features Final

• The interface must extend the jakarta.ejb.EJBObject interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that their
argument and return values must be of valid types for RMI/IIOP, and their throws clauses must
include the java.rmi.RemoteException.

• The remote component interface is allowed to have superinterfaces. Use of interface inheritance is
subject to the RMI/IIOP rules for the definition of remote interfaces.

• For each method defined in the remote component interface, there must be a matching method in
the session bean’s class. The matching method must have:

◦ The same name.

◦ The same number and types of arguments, and the same return type.

◦ All the exceptions defined in the throws clause of the matching method of the session bean class
must be defined in the throws clause of the method of the remote component interface.

• The remote component interface methods must not expose local component interface types, local
home interface types, timers or timer handles as arguments or results.

4.9.10. Session Bean’s Remote Home Interface

The following are the requirements for the session bean’s remote home interface:

• The interface must extend the jakarta.ejb.EJBHome interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that their
argument and return values must be of valid types for RMI/IIOP, and that their throws clauses must
include the java.rmi.RemoteException.

• The remote home interface is allowed to have superinterfaces. Use of interface inheritance is
subject to the RMI/IIOP rules for the definition of remote interfaces.

• A session bean’s remote home interface must define one or more create<METHOD> methods. A
stateless session bean must define exactly one create method with no arguments.

• Each create method of a stateful session bean must be named create<METHOD>, and it must match
one of the Init methods or ejbCreate<METHOD> methods defined in the session bean class. The
matching Init method or ejbCreate<METHOD> method must have the same number and types of
arguments. (Note that the return type is different.) The create method for a stateless session bean
must be named "create" but need not have a matching "ejbCreate" method.

• The return type for a create<METHOD> method must be the session bean’s remote component
interface type.

• All the exceptions defined in the throws clause of an ejbCreate<METHOD> method of the session bean
class must be defined in the throws clause of the matching create<METHOD> method of the remote
home interface.

• The throws clause must include jakarta.ejb.CreateException.

4.9. The Responsibilities of the Bean Provider

Final Jakarta® Enterprise Beans, Core Features 97

4.9.11. Session Bean’s Local Component Interface

The following are the requirements for the session bean’s local component interface:

• The interface must extend the jakarta.ejb.EJBLocalObject interface.

• The throws clause of a method defined in the local interface must not include the
java.rmi.RemoteException.

• The local component interface is allowed to have superinterfaces.

• For each method defined in the local component interface, there must be a matching method in the
session bean’s class. The matching method must have:

◦ The same name.

◦ The same number and types of arguments, and the same return type.

◦ All the exceptions defined in the throws clause of the matching method of the session bean class
must be defined in the throws clause of the method of the local component interface.

4.9.12. Session Bean’s Local Home Interface

The following are the requirements for the session bean’s local home interface:

• The interface must extend the jakarta.ejb.EJBLocalHome interface.

• The throws clause of a method in the local home interface must not include the
java.rmi.RemoteException.

• The local home interface is allowed to have superinterfaces.

• A session bean’s local home interface must define one or more create<METHOD> methods. A stateless
session bean must define exactly one create method with no arguments.

• Each create method of a stateful session bean must be named create<METHOD>, and it must match
one of the Init methods or ejbCreate<METHOD> methods defined in the session bean class. The
matching Init method or ejbCreate<METHOD> method must have the same number and types of
arguments. (Note that the return type is different.) The create method for a stateless session bean
must be named "create" but need not have a matching "ejbCreate" method.

• The return type for a create<METHOD> method must be the session bean’s local component interface
type.

• All the exceptions defined in the throws clause of an ejbCreate<METHOD> method of the session bean
class must be defined in the throws clause of the matching create<METHOD> method of the local home
interface.

• The throws clause must include jakarta.ejb.CreateException.

4.9.13. Session Bean’s Web Service Endpoint Interface

The Enterprise Beans 3.x API does not require the definition of a web service endpoint interface for

4.9. The Responsibilities of the Bean Provider

98 Jakarta® Enterprise Beans, Core Features Final

session beans that implement a web service endpoint.

The Jakarta XML Web Services and Jakarta Enterprise Web Services specifications do not require that a
separate interface be defined for a web service endpoint. The requirements for web service endpoints
under Jakarta XML Web Services and Jakarta Enterprise Web Services are given in [4] and [5].

4.10. The Responsibilities of the Container Provider
This section describes the responsibilities of the Container Provider to support a session bean. The
Container Provider is responsible for providing the deployment tools and for managing the session
bean instances at runtime.

Because the Enterprise Beans specification does not define the API between deployment tools and the
container, we assume that the deployment tools are provided by the Container Provider. Alternatively, the
deployment tools may be provided by a different vendor who uses the container vendor’s specific API.

4.10.1. Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional
classes when the session bean is deployed. The tools obtain the information that they need for
generation of the additional classes by introspecting the classes and interfaces provided by the Bean
Provider and by examining the session bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the session bean’s business interface.

• A class that implements the session bean’s no-interface view.

• A class that implements the session bean’s remote home interface (session EJBHome class).

• A class that implements the session bean’s remote component interface (session EJBObject class).

• A class that implements the session bean’s local home interface (session EJBLocalHome class).

• A class that implements the session bean’s local component interface (session EJBLocalObject
class).

• A class that implements the session bean’s web service endpoint.

• A class that implements the return value of an asynchronous method with return type Future<V>.

The deployment tools may also generate a class that mixes some container-specific code with the
session bean class. This code may, for example, help the container to manage the bean instances at
runtime. The tools can use subclassing, delegation, and code generation.

The deployment tools may also allow the generation of additional code that wraps the business
methods and is used to customize the business logic to an existing operational environment. For
example, a wrapper for a debit function on the AccountManager bean may check that the debited
amount does not exceed a certain limit.

4.10. The Responsibilities of the Container Provider

Final Jakarta® Enterprise Beans, Core Features 99

4.10.2. Generation of WSDL

Reference [5] describes the generation of a WSDL document for a web service endpoint. The Java to
WSDL mapping must adhere to the requirements of Jakarta XML Web Services [4].

4.10.3. Session Business Interface Implementation Class

The container’s implementation of the session business interface, which is generated by the
deployment tools, implements the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

The Container Provider is responsible for providing the implementation of the equals and hashCode
methods for the business interface, in conformance with the requirements of Session Object Identity.

4.10.4. No-Interface View Reference Class

The container’s implementation of the no-interface view reference, which is generated by the
deployment tools, implements the business methods that are exposed to the no-interface view client.

The implementation of each business method must activate the instance (if the instance is in the
passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

The Container Provider is responsible for providing the implementation of the equals and hashCode
methods for the no-interface view reference class, in conformance with the requirements of Client
view of Session Object’s Life Cycle.

4.10.5. Session EJBHome Class

The session EJBHome class, which is generated by the deployment tools, implements the session bean’s
remote home interface. This class implements the methods of the jakarta.ejb.EJBHome interface and
the create<METHOD> methods specific to the session bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD> method.

4.10.6. Session EJBObject Class

The session EJBObject class, which is generated by the deployment tools, implements the session bean’s
remote component interface. It implements the methods of the jakarta.ejb.EJBObject interface and the
business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

4.10. The Responsibilities of the Container Provider

100 Jakarta® Enterprise Beans, Core Features Final

4.10.7. Session EJBLocalHome Class

The session EJBLocalHome class, which is generated by the deployment tools, implements the session
bean’s local home interface. This class implements the methods of the jakarta.ejb.EJBLocalHome
interface and the create<METHOD> methods specific to the session bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD> method.

4.10.8. Session EJBLocalObject Class

The session EJBLocalObject class, which is generated by the deployment tools, implements the session
bean’s local component interface. It implements the methods of the jakarta.ejb.EJBLocalObject
interface and the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

4.10.9. Web Service Endpoint Implementation Class

The implementation class for a stateless session bean’s web service endpoint is generated by the
container’s deployment tools. This class must handle requests to the web service endpoint, unmarshall
the SOAP request, invoke any business method interceptor methods, and invoke the stateless session
bean method that matches the web service endpoint method that corresponds to the request.

4.10.10. Asynchronous Client Future<V> Return Value Implementation Class

The object returned from an asynchronous method with return type Future<V> is implemented by the
container’s deployment tools.

4.10.11. Handle Classes

The deployment tools are responsible for implementing the handle classes for the session bean’s
remote home and remote component interfaces.

4.10.12. EJBMetaData Class

The deployment tools are responsible for implementing the class that provides metadata to the remote
client view contract. The class must be a valid RMI Value class and must implement the
jakarta.ejb.EJBMetaData interface.

4.10.13. Non-reentrant Instances

The container must ensure that only one thread can be executing a stateless or stateful session bean
instance at any time. Therefore, stateful and stateless session beans do not have to be coded as
reentrant. One implication of this rule is that an application cannot make loopback calls to a stateless

4.10. The Responsibilities of the Container Provider

Final Jakarta® Enterprise Beans, Core Features 101

or stateful session bean instance.

4.10.14. Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and
exception handling, as described in Support for Transactions, Security Management, and Exception
Handling, respectively.

4.10.15. Jakarta XML Web Services Message Handlers for Web Service
Endpoints

The container must support the use of Jakarta XML Web Services message handlers for web service
endpoints. Container requirements for support of message handlers are specified in [4] and [5].

If message handlers are present, they must be invoked before any business method interceptor
methods.

4.10.16. SessionContext

The container must implement the SessionContext.getEJBObject method such that the bean instance
can use the Java language cast to convert the returned value to the session bean’s remote component
interface type. Specifically, the bean instance does not have to use the PortableRemoteObject.narrow
method for the type conversion.

The container must implement the EJBContext.lookup method such that when the lookup method is
used to look up a bean’s remote home interface, a bean instance can use the Java language cast to
convert the returned value to a session bean’s remote home interface type. Specifically, the bean
instance does not have to use the PortableRemoteObject.narrow method for the type conversion.

[10] Note that this requirement does not apply to the EntityManager and EntityManagerFactory objects.
[11] The container is not permitted to destroy a stateful session bean instance because it does not meet these
requirements.
[12] Note that the Java Serialization protocol dynamically determines whether or not an object is serializable. This
means that it is possible to serialize an object of a serializable subclass of a non-serializable declared field type.
[13] Component contract and client view of entity beans are described in the Enterprise Beans Optional Features
document [2].
[14] Except for the jakarta.mail.Session resource manager connection factory.
[15] This is to allow the container to swap out an instance’s state through techniques other than the Java Serialization
protocol. For example, the container’s Java Virtual Machine implementation may use a block of memory to keep the
instance’s variables, and the container swaps the whole memory block to the disk instead of performing Java
Serialization on the instance.
[16] Any initialization methods defined for the bean by means of the init-method deployment descriptor element apply
in addition to those defined by means of annotations.
[17] Any remove methods defined for the bean by means of the remove-method deployment descriptor element apply in
addition to those defined by means of annotations.
[18] The concurrency management type CONTAINER may be specified for stateful session beans, but doing so has no
impact on the semantics of concurrency management for such beans.
[19] The jakarta.ejb.ConcurrentAccessException is a subclass of the jakarta.ejb.EJBException. If the business interface is

4.10. The Responsibilities of the Container Provider

102 Jakarta® Enterprise Beans, Core Features Final

a remote business interface that extends java.rmi.Remote, the client will receive the java.rmi.RemoteException instead.
[20] Note that the existence of global JNDI names for the local and no-interface client views does not imply that cross-
application access to those entries is required. See Local Clients for more details.
[21] If an AroundConstruct lifecycle callback interceptor is associated with the stateful session bean, the container follows
the rules for the AroundConstruct interceptors defined in the Jakarta Interceptors specification [15].
[22] If a stateful session bean lifecycle callback interceptor method is invoked in the scope of a transaction, session
synchronization callbacks for such transactions are not called on the bean instance — see Session Synchronization
Callbacks.
[23] Note that if the Jakarta Persistence is used, the persistence provider will use the beforeCompletion notification to
automatically flush any updates to the container-managed persistence context to the database. See [3].
[24] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.NoSuchObjectException is thrown to the client instead.
[25] If the Remove annotation specifies the value of retainIfException as true, and the Remove method throws an
application exception, the instance is not removed (and the PreDestroy lifecycle callback interceptor methods are not
invoked).
[26] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.NoSuchObjectException is thrown to the client instead.
[27] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.NoSuchObjectException is thrown to the client instead.
[28] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
thrown to the client instead.
[29] If an AroundConstruct lifecycle callback interceptor is associated with the stateless session bean, the container
follows the rules for the AroundConstruct interceptors defined in the Jakarta Interceptors specification [15].
[30] If an AroundConstruct lifecycle callback interceptor is associated with the singleton session bean, the container
follows the rules for the AroundConstruct interceptors defined in the Jakarta Interceptors specification [15].
[31] Note that the interfaces provided by the Bean Provider may have been generated by tools.
[32] Note that the Enterprise Beans 2.x client view is not supported for singleton session beans.
[33] Except for singleton session beans.
[34] Note that this might result from the use of default interceptors, for example.
[35] It is also an error if the Local and/or Remote annotations are specified both on the bean class and on the referenced
interface and the values differ.

4.10. The Responsibilities of the Container Provider

Final Jakarta® Enterprise Beans, Core Features 103

Chapter 5. Message-Driven Bean Component
Contract
This chapter specifies the contract between a message-driven bean and its container. It defines the life
cycle of the message-driven bean instances.

This chapter defines the developer’s view of message-driven bean state management and the
container’s responsibility for managing message-driven bean state.

5.1. Overview
A message-driven bean is an asynchronous message consumer. A message-driven bean is invoked by
the container as a result of the arrival of a message at the destination or endpoint that is serviced by
the message-driven bean. A message-driven bean instance is an instance of a message-driven bean
class. A message-driven bean is defined for a single messaging type, in accordance with the message
listener interface it employs.

To a client, a message-driven bean is a message consumer that implements some business logic
running on the server. A client accesses a message-driven bean by sending messages to the destination
or endpoint for which the message-driven bean class is the message listener.

Message-driven beans are anonymous. They have no client-visible identity.

Message-driven bean instances have no conversational state. This means that all bean instances are
equivalent when they are not involved in servicing a client message.

A message-driven bean instance is created by the container to handle the processing of the messages
for which the message-driven bean is the consumer. Its lifetime is controlled by the container.

A message-driven bean instance has no state for a specific client. However, the instance variables of the
message-driven bean instance can contain state across the handling of client messages. Examples of such
state include an open database connection and a reference to an enterprise bean.

5.2. Goals
The goal of the message-driven bean model is to make developing an enterprise bean that is
asynchronously invoked to handle the processing of incoming messages as simple as developing the same
functionality in any other message listener.

A further goal of the message-driven bean model is to allow for the concurrent processing of a stream of
messages by means of container-provided pooling of message-driven bean instances.

5.1. Overview

104 Jakarta® Enterprise Beans, Core Features Final

5.3. Client View of a Message-Driven Bean
To a client, a message-driven bean is simply a message consumer. The client sends messages to the
destination or endpoint for which the message-driven bean is the message listener just as it would to
any other destination or endpoint. The message-driven bean, as a message consumer, handles the
processing of the messages.

From the perspective of the client, the existence of a message-driven bean is completely hidden behind
the destination or endpoint for which the message-driven bean is the message listener. The following
diagram illustrates the view that is provided to a message-driven bean’s clients.

Container

Client
destination
or endpoint

Message-driven
bean

Message-
driven bean
instances

Figure 8. Client view of Message-Driven Beans Deployed in a Container

A client’s JNDI name space may be configured to include the destinations or endpoints of message-
driven beans installed in multiple Enterprise Beans containers located on multiple machines on a
network. The actual locations of an enterprise bean and Enterprise Beans container are, in general,
transparent to the client using the enterprise bean.

References to message destinations can be injected, or they can be looked up in the client’s JNDI
namespace.

For example, the reference to the queue for a Jakarta Messaging message-driven bean might be
injected as follows.

@Resource
Queue stockInfoQueue;

5.3. Client View of a Message-Driven Bean

Final Jakarta® Enterprise Beans, Core Features 105

Alternatively, the queue for the StockInfo Jakarta Messaging message-driven bean might be located
using the following code segment:

Context initialContext = new InitialContext();
Queue stockInfoQueue = (jakarta.jms.Queue)initialContext.lookup
 ("java:comp/env/jms/stockInfoQueue");

The remainder of this chapter describes the message-driven bean life cycle in detail and the protocol
between the message-driven bean and its container.

5.4. Protocol Between a Message-Driven Bean Instance
and its Container
From its creation until destruction, a message-driven bean instance lives in a container. The container
provides security, concurrency, transactions, and other services for the message-driven bean. The
container manages the life cycle of the message-driven bean instances, notifying the instances when
bean action may be necessary, and providing a full range of services to ensure that the message-driven
bean implementation is scalable and can support the concurrent processing of a large number of
messages.

From the Bean Provider’s point of view, a message-driven bean exists as long as its container does. It is
the container’s responsibility to ensure that the message-driven bean comes into existence when the
container is started up and that instances of the bean are ready to receive asynchronous message
delivery before the delivery of messages is started.

Containers themselves make no actual service demands on the message-driven bean instances. The
calls a container makes on a bean instance provide it with access to container services and deliver
notifications issued by the container.

Since all instances of a message-driven bean are equivalent, a client message can be delivered to any
available instance.

5.4.1. Required MessageDrivenBean Metadata

A message-driven bean must be annotated with the MessageDriven annotation or denoted in the
deployment descriptor as a message-driven bean. The MessageDriven annotation is a component-
defining annotation and is applied to the bean class.

5.4.2. The Required Message Listener Interface

The message-driven bean class must implement the appropriate message listener interface for the
messaging type that the message-driven bean supports or specify the message listener interface using
the MessageDriven metadata annotation or the messaging-type deployment descriptor element. The
specific message listener interface that is implemented by a message-driven bean class distinguishes

5.4. Protocol Between a Message-Driven Bean Instance and its Container

106 Jakarta® Enterprise Beans, Core Features Final

the messaging type that the message-driven bean supports.

The message-driven bean class’s implementation of the jakarta.jms.MessageListener interface
distinguishes the message-driven bean as a Jakarta Messaging message-driven bean.

The bean’s message listener method (e.g., onMessage in the case of jakarta.jms.MessageListener) is called
by the container when a message has arrived for the bean to service. The message listener method
contains the business logic that handles the processing of the message.

A bean’s message listener interface may define more than one message listener method. If the
message listener interface contains more than one method, it is the resource adapter that
determines which method is invoked. See [16].

If the message-driven bean class implements more than one interface other than java.io.Serializable,
java.io.Externalizable, or any of the interfaces defined by the jakarta.ejb package, the message
listener interface must be specified by the messageListenerInterface element of the MessageDriven
annotation or the messaging-type element of the message-driven deployment descriptor element.

5.4.3. Message-Driven Bean with No-Methods Listener Interface

A message-driven bean is permitted to implement a listener interface with no methods. A bean that
implements a no-methods interface, exposes all non-static public methods of the bean class and of any
superclasses except java.lang.Object as message listener methods.

In this case, when requested by a resource adapter, the container provides a proxy which implements
the message listener interface and all message listener methods of the bean. A resource adapter may
use the Reflection API to invoke a message listener method on such a proxy. When the resource
adapter invokes a method on the proxy, the message listener method on the bean instance and any
interceptor methods are invoked as needed. The resource adapter determines which message listener
method is invoked according to its implementation logic.

Only public methods of the bean class and of any superclasses except java.lang.Object may be invoked
by a resource adapter. Attempted invocations of methods with any other access modifiers on a proxy
provided by the container must result in the jakarta.ejb.EJBException.

5.4.4. Dependency Injection

A message-driven bean may use dependency injection mechanisms to acquire references to resources
or other objects in its environment (see Enterprise Bean Environment). If a message-driven bean
makes use of dependency injection, the container injects these references after the bean instance is
created, and before any message-listener methods are invoked on the bean instance. If a dependency
on the MessageDrivenContext is declared, or if the bean class implements the optional MessageDrivenBean
interface (see The Optional MessageDrivenBean Interface), the MessageDrivenContext is also injected at

5.4. Protocol Between a Message-Driven Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 107

this time. If dependency injection fails, the bean instance is discarded.

Under the Enterprise Beans 3.x API, the bean class may acquire the MessageDrivenContext
interface through dependency injection without having to implement the MessageDrivenBean
interface. In this case, the Resource annotation (or resource-env-ref deployment descriptor
element) is used to denote the bean’s dependency on the MessageDrivenContext. See Enterprise
Bean Environment.

5.4.5. The MessageDrivenContext Interface

If the bean specifies a dependency on the MessageDrivenContext interface (or if the bean class
implements the MessageDrivenBean interface), the container must provide the message-driven bean
instance with a MessageDrivenContext. This gives the message-driven bean instance access to the
instance’s context maintained by the container. The MessageDrivenContext interface has the following
methods:

• The setRollbackOnly method allows the instance to mark the current transaction such that the only
outcome of the transaction is a rollback. Only instances of a message-driven bean with container-
managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction has been marked
for rollback. Only instances of a message-driven bean with container-managed transaction
demarcation can use this method.

• The getUserTransaction method returns the jakarta.transaction.UserTransaction interface that the
instance can use to demarcate transactions, and to obtain transaction status. Only instances of a
message-driven bean with bean-managed transaction demarcation can use this method.

• The getTimerService method returns the jakarta.ejb.TimerService interface.

• The getCallerPrincipal method returns the java.security.Principal that is associated with the
invocation.

• The isCallerInRole method is inherited from the EJBContext interface.

• The getEJBHome and getEJBLocalHome methods are inherited from the EJBContext interface. Message-
driven bean instances must not call these methods.

• The lookup method enables the message-driven bean to look up its environment entries in the JNDI
naming context.

• The getContextData method enables a message listener method, lifecycle callback method, or
timeout method to retrieve or update the interceptor context data associated with its invocation.

5.4.6. Message-Driven Bean Lifecycle Callback Interceptor Methods

The following lifecycle event callbacks are supported for message-driven beans.

• AroundConstruct

5.4. Protocol Between a Message-Driven Bean Instance and its Container

108 Jakarta® Enterprise Beans, Core Features Final

• PostConstruct

• PreDestroy

The PostConstruct and PreDestroy callback methods may be defined directly on the bean class or on a
separate interceptor class.[36] The AroundConstruct lifecycle callback interceptor method, if used, must
be defined on an interceptor class (see [15]). See Lifecycle Callback Interceptor Methods.

The PostConstruct callback occurs before the first message listener method invocation on the bean.
This is at a point after which any dependency injection has been performed by the container.

The PostConstruct lifecycle callback interceptor method executes in an unspecified transaction and
security context.

The PreDestroy callback occurs at the time the bean is removed from the pool or destroyed.

The PreDestroy lifecycle callback interceptor method executes in an unspecified transaction and
security context.

5.4.7. The Optional MessageDrivenBean Interface

The message-driven bean class is not required to implement the jakarta.ejb.MessageDrivenBean
interface.

Compatibility Note: The MessageDrivenBean interface was required by earlier versions of the Enterprise
Beans specification. Under the Enterprise Beans 3.x API, the functionality previously provided by the
MessageDrivenBean interface is available to the bean class through the use of dependency injection (of the
MessageDrivenContext) and optional lifecycle callback methods.

The MessageDrivenBean interface defines two methods, setMessageDrivenContext and ejbRemove.

The setMessageDrivenContext method is called by the bean’s container to associate a message-driven
bean instance with its context maintained by the container. Typically a message-driven bean instance
retains its message-driven context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the container.
In the ejbRemove method, the instance releases the resources that it is holding.

Under the Enterprise Beans 3.x API, the bean class may optionally define a PreDestroy callback
method for notification of the container’s removal of the bean instance.

This specification requires that the ejbRemove and the ejbCreate methods of a message-driven bean be
treated as the PreDestroy and PostConstruct lifecycle callback methods, respectively. If the message-
driven bean implements the MessageDrivenBean interface, the PreDestroy annotation can only be applied
to the ejbRemove method. Similar requirements apply to use of deployment descriptor metadata as an
alternative to the use of annotations.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 109

5.4.8. Timeout Callbacks

A message-driven bean can be registered with the Enterprise Beans Timer Service for time-based event
notifications. The container invokes the appropriate bean instance timeout callback method when a
timer for the bean has expired. See Timer Service.

5.4.9. Message-Driven Bean Creation

Except as noted below, the container creates an instance of a message-driven bean in three steps. First,
the container calls the bean class constructor to create a new message-driven bean instance. Second,
the container injects the bean’s MessageDrivenContext, if applicable, and performs any other
dependency injection as specified by metadata annotations on the bean class or by the deployment
descriptor. Third, the container calls the instance’s PostConstruct lifecycle callback methods, if any. See
Lifecycle Callback Interceptor Methods.

If an interceptor associated with the message-driven bean declares an AroundConstruct lifecycle
callback interceptor method, the container follows the rules for the AroundConstruct interceptors
defined in the Jakarta Interceptors specification [15].

Compatibility Note: Enterprise Beans 2.1 required the message-driven bean class to implement the
ejbCreate method. This requirement has been removed from the Enterprise Beans 3.x API. If the message-
driven bean class implements the ejbCreate method, the ejbCreate method is treated as the bean’s
PostConstruct method, and the PostConstruct annotation can only be applied to the ejbCreate method.

5.4.10. Message Listener Interceptor Methods for Message-Driven Beans

AroundInvoke interceptor methods are supported for message-driven beans. These interceptor methods
may be defined on the bean class or on a interceptor class and apply to the handling of the invocation
of the bean’s message listener method(s).

Interceptors are described in Interceptors.

5.4.11. Serializing Message-Driven Bean Methods

The container serializes calls to each message-driven bean instance. Most containers will support
many instances of a message-driven bean executing concurrently; however, each instance sees only a
serialized sequence of method calls. Therefore, a message-driven bean does not have to be coded as
reentrant.

The container must serialize all the container-invoked callbacks (e.g., lifecycle callback interceptor
methods and timeout callback methods), and it must serialize these callbacks with the message listener
method calls.

5.4.12. Concurrency of Message Processing

A container allows many instances of a message-driven bean class to be executing concurrently, thus

5.4. Protocol Between a Message-Driven Bean Instance and its Container

110 Jakarta® Enterprise Beans, Core Features Final

allowing for the concurrent processing of a stream of messages. No guarantees are made as to the
exact order in which messages are delivered to the instances of the message-driven bean class,
although the container should attempt to deliver messages in order when it does not impair the
concurrency of message processing. Message-driven beans should therefore be prepared to handle
messages that are out of sequence: for example, the message to cancel a reservation may be delivered
before the message to make the reservation.

5.4.13. Transaction Context of Message-Driven Bean Methods

A bean’s message listener and timeout callback methods are invoked in the scope of a transaction
determined by the transaction attribute specified in the bean’s metadata annotations or deployment
descriptor. If the bean is specified as using container-managed transaction demarcation, either the
REQUIRED or the NOT_SUPPORTED transaction attribute must be used for the message listener methods, and
either the REQUIRED, REQUIRES_NEW, or the NOT_SUPPORTED transaction attribute for timeout callback
methods. See Support for Transactions.

When a message-driven bean using bean-managed transaction demarcation uses the
jakarta.transaction.UserTransaction interface to demarcate transactions, the message receipt that
causes the bean to be invoked is not part of the transaction. If the message receipt is to be part of the
transaction, container-managed transaction demarcation with the REQUIRED transaction attribute must
be used.

The bean constructor, the setMessageDrivenContext method, the message-driven bean’s dependency
injection methods, and lifecycle callback methods are called with an unspecified transaction context.
Refer to Handling of Methods that Run with "an unspecified transaction context" for how the container
executes methods with an unspecified transaction context.

5.4.14. Security Context of Message-Driven Bean Methods

A caller principal may propagate into a message-driven bean’s message listener methods. Whether this
occurs is a function of the specific message-listener interface and associated messaging provider, but is
not governed by this specification.

The Bean Provider can use the RunAs metadata annotation (or corresponding deployment descriptor
element) to define a run-as identity for the enterprise bean. The run-as identity applies to the bean’s
message listener methods and timeout methods. Run-as identity behavior is further defined in Run-as.

5.4.15. Association of a Message-Driven Bean with a Destination or Endpoint

A message-driven bean is associated with a destination or endpoint when the bean is deployed in the
container. It is the responsibility of the Deployer to associate the message-driven bean with a
destination or endpoint.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 111

5.4.16. Activation Configuration Properties

The Bean Provider may provide information to the Deployer about the configuration of the message-
driven bean in its operational environment. This may include information about message
acknowledgement modes, message selectors, expected destination or endpoint types, etc.

Activation configuration properties are specified by means of the activationConfig element of the
MessageDriven annotation or activation-config deployment descriptor element. Activation
configuration properties specified in the deployment descriptor are added to those specified by means
of the MessageDriven annotation. If a property of the same name is specified in both, the deployment
descriptor value overrides the value specified in the annotation.

5.4.17. Jakarta Messaging Message-Driven Beans

This section describes activation configuration properties specific to the Jakarta Messaging message-
driven beans.

The container may or may not support its built-in Jakarta Messaging provider using a resource
adapter. However, it must allow the application to configure a message-driven bean that uses the built-
in Jakarta Messaging provider using the activation properties defined by this specification.

Both the container and any Jakarta Messaging resource adapters are free to support activation
properties in addition to those listed here. However, applications that use non-standard activation
properties will not be portable.

5.4.17.1. Message Acknowledgment

Jakarta Messaging message-driven beans should not attempt to use the Jakarta Messaging API for
message acknowledgment. Message acknowledgment is automatically handled by the container. If the
message-driven bean uses container-managed transaction demarcation, message acknowledgment is
handled automatically as a part of the transaction commit. If bean-managed transaction demarcation
is used, the message receipt cannot be part of the bean-managed transaction, and, in this case, the
receipt is acknowledged by the container. If bean-managed transaction demarcation is used, the Bean
Provider can indicate whether Jakarta Messaging AUTO_ACKNOWLEDGE semantics or DUPS_OK_ACKNOWLEDGE
semantics should apply by using the activationConfig element of the MessageDriven annotation or by
using the activation-config-property deployment descriptor element. The property name used to
specify the acknowledgment mode is acknowledgeMode. If the acknowledgeMode property is not specified,
Jakarta Messaging AUTO_ACKNOWLEDGE semantics are assumed. The value of the acknowledgeMode property
must be either Auto-acknowledge or Dups-ok-acknowledge for a Jakarta Messaging message-driven bean.

5.4.17.2. Message Selectors

The Bean Provider may declare the Jakarta Messaging message selector to be used in determining
which messages a Jakarta Messaging message-driven bean is to receive. If the Bean Provider wishes to
restrict the messages that a Jakarta Messaging message-driven bean receives, the Bean Provider can
specify the value of the message selector by using the activationConfig element of the MessageDriven

5.4. Protocol Between a Message-Driven Bean Instance and its Container

112 Jakarta® Enterprise Beans, Core Features Final

annotation or by using the activation-config-property deployment descriptor element. The property
name used to specify the message selector is messageSelector.

For example:

@MessageDriven(activationConfig={
 @ActivationConfigProperty(
 propertyName="messageSelector",
 propertyValue="JMSType = 'car' AND color = 'blue'
 AND weight > 2500")
})

<activation-config>
 <activation-config-property>
 <activation-config-property-name>
 messageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 JMSType = 'car' AND color = 'blue' AND
 weight > 2500
 </activation-config-property-value>
 </activation-config-property>
</activation-config>

The Application Assembler may further restrict, but not replace, the value of the messageSelector
property of a Jakarta Messaging message-driven bean.

5.4.17.3. Destination Type

A Jakarta Messaging message-driven bean is associated with a Jakarta Messaging Destination (Queue
or Topic) when the bean is deployed in the container. It is the responsibility of the Deployer to
associate the message-driven bean with a Queue or Topic.

The Bean Provider may provide advice to the Deployer as to whether a message-driven bean is
intended to be associated with a Queue or a Topic by using the activationConfig element of the
MessageDriven annotation or by using the activation-config-property deployment descriptor element.
The property name used to specify the destination type associated with the bean is destinationType.
The value for this property must be either jakarta.jms.Queue or jakarta.jms.Topic for a Jakarta
Messaging message-driven bean.

5.4.17.4. Destination Lookup

The Bean Provider or Deployer may specify the Jakarta Messaging queue or topic from which a Jakarta
Messaging message-driven bean is to receive messages.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 113

The lookup name of an administratively-defined Queue or Topic object may be specified by using the
activationConfig element of the MessageDriven annotation or by using the activation-config-property
deployment descriptor element. The property name used to specify the lookup name is
destinationLookup.

5.4.17.5. Connection Factory Lookup

The Bean Provider or Deployer may specify the Jakarta Messaging connection factory that will be used
to connect to the Jakarta Messaging provider from which a Jakarta Messaging message-driven bean is
to receive messages.

The lookup name of an administratively-defined ConnectionFactory object may be specified by using
the activationConfig element of the MessageDriven annotation or by using the activation-config-
property deployment descriptor element. The property name used to specify the lookup name is
connectionFactoryLookup.

5.4.17.6. Subscription Durability

If the message-driven bean is intended to be used with a topic, the Bean Provider may further indicate
whether a durable or non-durable subscription should be used by using the activationConfig element
of the MessageDriven annotation or by using the activation-config-property deployment descriptor
element. The property name used to specify whether a durable or non-durable subscription should be
used is subscriptionDurability. The value for this property must be either Durable or NonDurable for a
Jakarta Messaging message-driven bean. If a topic subscription is specified and subscriptionDurability
is not specified, a non-durable subscription is assumed.

• Durable topic subscriptions, as well as queues, ensure that messages are not missed even if the
Enterprise Beans server is not running. Reliable applications will typically make use of queues or
durable topic subscriptions rather than non-durable topic subscriptions.

• If a non-durable topic subscription is used, it is the container’s responsibility to make sure that the
message-driven bean subscription is active (i.e., that there is a message-driven bean available to
service the message) in order to ensure that messages are not missed as long as the Enterprise
Beans server is running. Messages may be missed, however, when a bean is not available to service
them. This will occur, for example, if the Enterprise Beans server goes down for any period of time.

The Deployer should avoid associating more than one message-driven bean with the same Jakarta
Messaging queue. If there are multiple Jakarta Messaging consumers for a queue, Jakarta Messaging
does not define how messages are distribued between the queue receivers.

5.4.17.7. Subscription Name

If the message-driven bean is intended to be used with a topic, and the bean provider has indicated
that a durable subscription should be used by specifying the subscriptionDurability property to
Durable, then the bean provider or deployer may specify the name of the durable subscription.

The name of the subscription may be specified by using the activationConfig element of the

5.4. Protocol Between a Message-Driven Bean Instance and its Container

114 Jakarta® Enterprise Beans, Core Features Final

MessageDriven annotation or by using the activation-config-property deployment descriptor element.
The property name used to specify the name of the subscription is subscriptionName.

The Bean Provider or Deployer cannot specify whether a shared or unshared subscription will be used.

5.4.17.8. Client Identifier

The Bean Provider or Deployer may specify the Jakarta Messaging client identifier that will be used
when connecting to the Jakarta Messaging provider from which a Jakarta Messaging message-driven
bean is to receive messages.

The client identifier may be specified by using the activationConfig element of the MessageDriven
annotation or by using the activation-config-property deployment descriptor element. The property
name used to specify the client identifier is clientId.

5.4.18. Dealing with Exceptions

A message-driven bean’s message listener method must not throw the java.rmi.RemoteException.

Message-driven beans should not, in general, throw RuntimeException.

A RuntimeException that is not an application exception thrown from any method of the message-driven
bean class (including a message listener method and the callbacks invoked by the container) results in
the transition to the "does not exist" state. If a message-driven bean uses bean-managed transaction
demarcation and throws a RuntimeException, the container should not acknowledge the message.
Exception handling is described in detail in Exception Handling. See the Jakarta Interceptors
specification [15] for the rules pertaining to lifecycle callback interceptor methods when more than
one such method applies to the bean class.

From the client perspective, the message consumer continues to exist. If the client continues sending
messages to the destination or endpoint associated with the bean, the container can delegate the
client’s messages to another instance.

The message listener methods of some messaging types may throw application exceptions. An
application exception is propagated by the container to the resource adapter.

5.4.19. Missed PreDestroy Callbacks

The Bean Provider cannot assume that the container will always invoke the PreDestroy callback
method (or ejbRemove method) for a message-driven bean instance. The following scenarios result in
the PreDestroy callback method not being called on an instance:

• A crash of the Enterprise Beans container.

• A system exception thrown from the instance’s method to the container.

If the message-driven bean instance allocates resources in the PostConstruct lifecycle callback method
and/or in the message listener method, and releases normally the resources in the PreDestroy method,

5.4. Protocol Between a Message-Driven Bean Instance and its Container

Final Jakarta® Enterprise Beans, Core Features 115

these resources will not be automatically released in the above scenarios. The application using the
message-driven bean should provide some clean up mechanism to periodically clean up the
unreleased resources.

5.4.20. Replying to a Jakarta Messaging Message

In standard Jakarta Messaging usage scenarios, the messaging mode of a message’s JMSReplyTo
destination (Queue or Topic) is the same as the mode of the destination to which the message has been
sent. Although a message-driven bean is not directly dependent on the mode of the Jakarta Messaging
destination from which it is consuming messages, it may contain code that depends on the mode of its
message’s JMSReplyTo destination. In particular, if a message-driven bean replies to a message, the
mode of the reply’s message producer and the mode of the JMSReplyTo destination must be the same. In
order to implement a message-driven bean that is independent of JMSReplyTo mode, the Bean Provider
should use instanceOf to test whether a JMSReplyTo destination is a Queue or Topic, and then use a
matching message producer for the reply.

5.5. Message-Driven Bean State Diagram
When a client sends a message to a Destination for which a message-driven bean is the consumer, the
container selects one of its method-ready instances and invokes the instance’s message listener
method.

The following figure illustrates the life cycle of a message-driven bean instance.

does not exist

1. AroundConstruct callbacks, if any
2. constructor
3. dependency injection, if any
4. PostConstruct callbacks, if any

method-ready pool
message listener method

timeout callback method

PreDestroy callbacks, if any

message listener
method
constructor

action resulting from client message arrival

action initiated by container

Figure 9. Life Cycle of a Message-Driven Bean

The following steps describe the life cycle of a message-driven bean instance:

5.5. Message-Driven Bean State Diagram

116 Jakarta® Enterprise Beans, Core Features Final

A message-driven bean instance’s life starts when the container invokes the message-driven bean class
constructor to create a new instance.[37] Next, the container injects the bean’s MessageDrivenContext
object, if applicable, and performs any other dependency injection as specified by metadata
annotations on the bean class or by the deployment descriptor. The container then calls the bean’s
PostConstruct lifecycle callback methods, if any.

The message-driven bean instance is now ready to be delivered a message sent to its associated
destination or endpoint by any client or a call from the container to a timeout callback method.

When the container no longer needs the instance (which usually happens when the container wants to
reduce the number of instances in the method-ready pool), the container invokes the PreDestroy
lifecycle callback methods for it, if any. This ends the life of the message-driven bean instance.

5.5.1. Operations Allowed in the Methods of a Message-Driven Bean Class

Operations Allowed in the Methods of a Message-Driven Bean defines the methods of a message-driven
bean class in which the message-driven bean instances can access the methods of the
jakarta.ejb.MessageDrivenContext interface, the java:comp/env environment naming context, resource
managers, TimerService and Timer methods, the EntityManager and EntityManagerFactory methods, and
other enterprise beans.

If a message-driven bean instance attempts to invoke a method of the MessageDrivenContext interface,
and the access is not allowed in Operations Allowed in the Methods of a Message-Driven Bean, the
container must throw and log the java.lang.IllegalStateException.

If a message-driven bean instance attempts to invoke a method of the TimerService or Timer interface,
and the access is not allowed in Operations Allowed in the Methods of a Message-Driven Bean, the
container must throw the java.lang.IllegalStateException.

If a bean instance attempts to access a resource manager, an enterprise bean, or an entity manager or
entity manager factory, and the access is not allowed in Operations Allowed in the Methods of a
Message-Driven Bean, the behavior is undefined by the Enterprise Beans specification.

Table 4. Operations Allowed in the Methods of a Message-Driven Bean

Bean method Bean method can perform the following operations

Container-managed
transaction demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection methods
(e.g., setMessageDrivenContext)

MessageDrivenContext
methods

lookup

JNDI access to java:comp/env

MessageDrivenContext
methods

lookup

JNDI access to java:comp/env

5.5. Message-Driven Bean State Diagram

Final Jakarta® Enterprise Beans, Core Features 117

Bean method Bean method can perform the following operations

PostConstruct, PreDestroy
lifecycle callback methods

MessageDrivenContext
methods

getTimerService, lookup,
getContextData

JNDI access to java:comp/env
EntityManagerFactory access

MessageDrivenContext
methods

getUserTransaction,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
EntityManagerFactory access

message listener method,
AroundInvoke interceptor
method

MessageDrivenContext
methods

getRollbackOnly,
setRollbackOnly,
getCallerPrincipal,
isCallerInRole,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

MessageDrivenContext
methods

getUserTransaction,
getCallerPrincipal,
isCallerInRole,
getTimerService, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

timeout callback method

MessageDrivenContext
methods

getRollbackOnly,
setRollbackOnly,
getCallerPrincipal,
getTimerService, lookup,
getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

MessageDrivenContext
methods

getUserTransaction,
getCallerPrincipal,
getTimerService, lookup,
getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

Additional restrictions:

5.5. Message-Driven Bean State Diagram

118 Jakarta® Enterprise Beans, Core Features Final

• The getRollbackOnly and setRollbackOnly methods of the MessageDrivenContext interface should be
used only in the message-driven bean methods that execute in the context of a transaction. The
container must throw the java.lang.IllegalStateException if the methods are invoked while the
instance is not associated with a transaction.

The reasons for disallowing operations in Operations Allowed in the Methods of a Message-Driven
Bean:

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the message-driven
bean methods for which the container does not have a meaningful transaction context, and for all
message-driven beans with bean-managed transaction demarcation.

• The UserTransaction interface is unavailable to message-driven beans with container-managed
transaction demarcation.

• Invoking getEJBHome or getEJBLocalHome is disallowed in message-driven bean methods because
there are no EJBHome or EJBLocalHome objects for message-driven beans. The container must
throw and log the java.lang.IllegalStateException if these methods are invoked.

5.6. The Responsibilities of the Bean Provider
This section describes the responsibilities of the message-driven Bean Provider to ensure that a
message-driven bean can be deployed in any Enterprise Beans container.

5.6.1. Classes and Interfaces

The message-driven Bean Provider is responsible for providing the following class files:

• Message-driven bean class.

• Interceptor classes, if any.

5.6.2. Message-Driven Bean Class

The following are the requirements for the message-driven bean class:

• The class must implement, directly or indirectly, the message listener interface required by the
messaging type that it supports or the methods of the message listener interface. In the case of
Jakarta Messaging, this is the jakarta.jms.MessageListener interface.

• The class must be defined as public, must not be final, and must not be abstract. The class must be
a top level class.

• The class must have a public constructor that takes no arguments. The container uses this
constructor to create instances of the message-driven bean class.

• The class must not define the finalize method.

Optionally:

5.6. The Responsibilities of the Bean Provider

Final Jakarta® Enterprise Beans, Core Features 119

• The class may implement, directly or indirectly, the jakarta.ejb.MessageDrivenBean interface.

• The class may implement, directly or indirectly, the jakarta.ejb.TimedObject interface.

• The class may implement the ejbCreate method.

• The class may have an additional constructor annotated with the Inject annotation (see
Relationship to Jakarta Contexts and Dependency Injection and the CDI specification [8]).

The message-driven bean class may have superclasses and/or superinterfaces. If the message-driven
bean has superclasses, the message listener methods, lifecycle callback interceptor methods, timeout
callback methods, the ejbCreate method, and the methods of the MessageDrivenBean interface may be
defined in the message-driven bean class or in any of its superclasses.

The message-driven bean class is allowed to implement other methods (for example, helper methods
invoked internally by the message listener method) in addition to the methods required by the
Enterprise Beans specification.

5.6.3. Message-Driven Bean Superclasses

A message-driven bean class is permitted to have superclasses that are themselves message-driven
bean classes. However, there are no special rules that apply to the processing of annotations or the
deployment descriptor for this case. For the purposes of processing a particular message-driven bean
class, all superclass processing is identical regardless of whether the superclasses are themselves
message-driven bean classes. In this regard, the use of message-driven bean classes as superclasses
merely represents a convenient use of implementation inheritance, but does not have component
inheritance semantics.

5.6.4. Message Listener Method

The message-driven bean class must define the message listener methods. The signature of a message
listener method must follow these rules:

The method must be declared as public.

The method must not be declared as final or static.

5.6.5. Message-Driven Bean with No-Methods Listener Interface

The following additional requirements apply for a message-driven bean with a no-methods interface:

• All non-static public methods of the bean class and of any superclasses except java.lang.Object are
exposed as message listener methods.

Note: This includes callback methods. The Bean Provider should exercise caution when choosing to
expose callback methods as message listener methods. The runtime context (e.g. transaction context,
caller principal, operations allowed, etc.) for a method invoked as a callback can differ significantly from
the context for the same method when invoked as a message listener. In general, callback methods should

5.6. The Responsibilities of the Bean Provider

120 Jakarta® Enterprise Beans, Core Features Final

not be exposed as message listener methods. Therefore, it is recommended that all methods other than
message listener methods be assigned an access type other than public.

• Only private methods of the bean class and any superclasses except java.lang.Object may be
declared final.

5.6.6. Lifecycle Callback Interceptor Methods

PostConstruct and PreDestroy lifecycle callback interceptor methods may be defined for message-
driven beans. If PrePassivate or PostActivate lifecycle callbacks are defined, they are ignored.[38]

Compatibility Note: If the PostConstruct lifecycle callback interceptor method is the ejbCreate method, or
if the PreDestroy lifecycle callback interceptor method is the ejbRemove method, these callback methods
must be implemented on the bean class itself (or on its superclasses). Except for these cases, the method
names can be arbitrary, but must not start with "ejb" to avoid conflicts with the callback methods defined
by the jakarta.ejb.EnterpriseBean interfaces.

Lifecycle callback interceptor methods may be defined on the bean class and/or on an interceptor class
of the bean. Rules applying to the definition of lifecycle callback interceptor methods are defined in
Interceptors for LifeCycle Event Callbacks.

5.7. The Responsibilities of the Container Provider
This section describes the responsibilities of the Container Provider to support a message-driven bean.
The Container Provider is responsible for providing the deployment tools, and for managing the
message-driven bean instances at runtime.

Because the Enterprise Beans specification does not define the API between deployment tools and the
container, we assume that the deployment tools are provided by the Container Provider. Alternatively, the
deployment tools may be provided by a different vendor who uses the container vendor’s specific API.

5.7.1. Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional
classes when the message-driven bean is deployed. The tools obtain the information that they need for
generation of the additional classes by introspecting the classes and interfaces provided by the
Enterprise Bean Provider and by examining the message-driven bean’s deployment descriptor.

The deployment tools may generate a class that mixes some container-specific code with the message-
driven bean class. This code may, for example, help the container to manage the bean instances at
runtime. Subclassing, delegation, and code generation can be used by the tools.

5.7. The Responsibilities of the Container Provider

Final Jakarta® Enterprise Beans, Core Features 121

5.7.2. Deployment of Message-Driven Beans with No-Methods Listener
Interface

The Container Provider must support the deployment of a message-driven bean with a no-methods
listener interface.

The container’s implementation class generated by the deployment tools must implement the message
listener interface and implement all non-static public methods of the bean class and of any
superclasses except java.lang.Object as message listener methods.

5.7.3. Deployment of Jakarta Messaging Message-Driven Beans

The Container Provider must support the deployment of a Jakarta Messaging message-driven bean as
the consumer of a Jakarta Messaging queue or topic.

5.7.4. Request/Response Messaging Types

If the message listener supports a request/response messaging type, it is the container’s responsibility
to deliver the message response.

5.7.5. Non-reentrant Instances

The container must ensure that only one thread can be executing an instance at any time.

5.7.6. Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and
exception handling, as described in Support for Transactions, Security Management, and Exception
Handling.

[36] If PrePassivate or PostActivate lifecycle callbacks are defined for message-driven beans, they are ignored.
[37] If an AroundConstruct lifecycle callback interceptor is associated with the message-driven bean, the container
follows the rules for the AroundConstruct interceptors defined in the Jakarta Interceptors specification [15].
[38] This might result from the use of default interceptor classes, for example.

5.7. The Responsibilities of the Container Provider

122 Jakarta® Enterprise Beans, Core Features Final

Chapter 6. Persistence
The model for persistence and object/relational mapping was considerably revised and enhanced in
the Enterprise Beans 3.0 release. The contracts and requirements for persistent entities are defined by
the "Jakarta Persistence" specification [3], which also contains the full specification of the Jakarta
Persistence query language and the metadata for object/relational mapping.

The client view of entity beans under the earlier Enterprise Beans 2.1 programming model, the
contracts for Enterprise Beans 2.1 Entity Beans with Container-Managed Persistence, the contracts for
the Enterprise Beans QL query language, the contracts for Enterprise Beans 2.1 Entity Beans with
Bean-Managed Persistence, and the contracts for Enterprise Beans 1.1 Entity Beans with Container-
Managed Persistence are described in the Enterprise Beans Optional Features document [2]. See
Chapter 3, Chapter 4, Chapter 5, Chapter 6 and Chapter 7 respectively.

Chapter 6. Persistence

Final Jakarta® Enterprise Beans, Core Features 123

./enterprise-beans-spec-opt-4.0.pdf#a41
./enterprise-beans-spec-opt-4.0.pdf#a384
./enterprise-beans-spec-opt-4.0.pdf#a1840
./enterprise-beans-spec-opt-4.0.pdf#a2456
./enterprise-beans-spec-opt-4.0.pdf#a3071

Chapter 7. Interceptors
Interceptors are used to interpose on the business method invocations and lifecycle events that occur
on an enterprise bean instance.

7.1. Overview
The general rules for defining Interceptor classes, their lifecycle, and associated metadata are
described in the Jakarta Interceptors specification [15]. This chapter describes the set of requirements
that are specific to the use of interceptors with Enterprise Beans.

For the use of interceptors with Enterprise Beans, the interceptor "target class" is the bean class.
Interceptors may be used with session beans and message-driven beans.

The programming restrictions that apply to enterprise bean components apply to interceptors as well.
See Programming Restrictions.

It is illegal to associate Jakarta Transactions transactional interceptors (see [17]) with Enterprise Beans.
The Enterprise Beans Container should fail deployment of such applications.[39]

Default interceptors are interceptors that apply to all components within an ejb-jar file or .war file.

7.2. Interceptor Life Cycle
The lifecycle of an interceptor instance is the same as that of the bean instance with which it is
associated. In the case of interceptors associated with stateful session beans, the interceptor instances
are passivated upon bean instance passivation, and activated when the bean instance is activated. See
Stateful Session Beans, Stateless Session Bean Lifecycle State Diagram, and Message-Driven Bean State
Diagram.

In addition to the AroundConstruct, PostConstruct and PreDestroy callback support required by the
Jakarta Interceptors specification [15], interceptors associated with stateful session beans may define
PostActivate and PrePassivate callbacks. Both the interceptor instance and the bean instance are
created or activated before any of the respective PostConstruct or PostActivate callbacks are invoked.
Any PreDestroy and PrePassivate callbacks are invoked before the respective destruction or passivation
of either the bean instance or interceptor instance.

The use of an extended persistence context is only supported for interceptors that are associated with
stateful session beans.

7.3. Business Method Interceptors
AroundInvoke interceptor methods may be defined for business methods of sessions beans and for the
message listener methods of message-driven beans.

7.1. Overview

124 Jakarta® Enterprise Beans, Core Features Final

Business method interceptor methods may throw runtime exceptions or application exceptions that
are allowed in the throws clause of the business method. See section Exception Handling for further
details.

7.4. Timer Timeout Method Interceptors
Interceptor methods may be defined for the Enterprise Beans timer timeout methods of session beans
and message-driven beans. Such methods are referred to as AroundTimeout methods.

Within an AroundTimeout method, the InvocationContext.getTimer() method returns the
jakarta.ejb.Timer object associated with the timeout being intercepted.

AroundTimeout methods may throw system exceptions, but not application exceptions. See Exception
Handling for further details.

7.5. Interceptors for LifeCycle Event Callbacks
Lifecycle callback interceptor methods may be defined for session beans and message-driven beans.

The AroundConstruct, PostConstruct, PreDestroy, PostActivate, and PrePassivate annotations are used to
define interceptor methods for a lifecycle callback events. An AroundConstruct lifecycle callback
interceptor method may be defined on an interceptor class only. All other interceptor methods can be
defined on an interceptor class and/or directly on the bean class.

Lifecycle callback interceptor methods are invoked in an unspecified security context. Lifecycle
callback interceptor methods are invoked in an unspecified transaction context, except for singleton
and stateful session bean PostConstruct and PreDestroy methods and stateful session bean
PostActivate, and PrePassivate methods, whose transaction context is based on their respective
transaction attributes. See Session Bean Lifecycle Callback Interceptor Methods.

PostActivate, and PrePassivate methods follow requirements for the lifecycle callback interceptor
methods defined in the Interceptors specification document [15].

Lifecycle callback interceptor methods may throw system runtime exceptions, but not application
exceptions. See Exception Handling for further details.

7.6. InvocationContext
The InvocationContext object provides metadata that enables interceptor methods to control the
behavior of the invocation chain. The getContextData method enables an interceptor to retrieve or
update the data associated with the invocation by another interceptor, business method, and/or
webservices context in the invocation chain. The contextual data is not sharable across separate
business method invocations or lifecycle callback events. If interceptors are invoked as a result of the
invocation on a web service endpoint, the map returned by the getContextData method will be the
Jakarta XML Web Services MessageContext [4]. The lifecycle of the InvocationContext instance is

7.4. Timer Timeout Method Interceptors

Final Jakarta® Enterprise Beans, Core Features 125

otherwise unspecified.

7.7. Exception Handling
Interceptor methods are allowed to throw runtime exceptions or any checked exceptions that the
method they interpose on allows within its throws clause. Interceptor methods are allowed to catch and
suppress exceptions and recover by calling proceed().

Interceptor method invoked in a transaction context, can mark the transaction for rollback by
throwing a runtime exception or by calling the EJBContext method setRollbackOnly(). This may be done
before or after InvocationContext.proceed() is called.

If a system exception escapes the interceptor chain, the bean instance and any associated interceptor
instances are discarded (unless the bean is a singleton session bean [40]). The PreDestroy callbacks are
not invoked in this case: the interceptor methods in the chain should perform any necessary clean-up
operations as the interceptor chain unwinds.

7.8. Specification of Interceptors in the Deployment
Descriptor
The deployment descriptor can be used as an alternative to metadata annotations to specify
interceptors and their binding to enterprise beans or to override the invocation order of interceptors
as specified in annotations.

7.8.1. Specification of Interceptors

The interceptor deployment descriptor element is used to specify the interceptor methods of an
interceptor class. The interceptor methods are specified by using the around-invoke, around-timeout,
around-construct, post-construct, pre-destroy, pre-passivate, and post-activate elements.

At most one method of a given interceptor class can be designated as an around-invoke method, an
around-timeout method, a lifecycle callback interceptor method, regardless of whether the deployment
descriptor is used to define interceptors or whether some combination of annotations and deployment
descriptor elements is used.

7.8.2. Binding of Interceptors to Target Classes

The interceptor-binding element is used to specify the binding of interceptor classes to target classes
and their methods. The subelements of the interceptor-binding element are as follows:

• The target-name element must identify the associated target class or the wildcard value "*" (which
is used to define interceptors that are bound to all target classes).

• The interceptor-class element specifies the interceptor class. The interceptor class contained in an
interceptor-class element must either be declared in the interceptor deployment descriptor

7.7. Exception Handling

126 Jakarta® Enterprise Beans, Core Features Final

element or appear in at least one Interceptor annotation on a target class. The interceptor-order
element is used as an optional alternative to specify a total ordering over the interceptors defined
for the given level and above.

• The exclude-default-interceptors and exclude-class-interceptors elements specify that default
interceptors and class interceptors, respectively, are not to be applied to a target class and/or
method.

• The method-name element specifies the method name for a method-level interceptor; and the
optional method-params elements identify a single method among multiple methods with an
overloaded method name.

• The method-name element may be used to bind a constructor-level interceptor using the unqualified
name of the bean class as the value; the optional method-params elements identify the constructor if
a bean class has a constructor annotated with the Inject annotation in addition to a no-arg
constructor.

Default interceptors are bound to all target classes in a module using the wildcard syntax "*". In
addition, interceptors may be bound at the level of the target class (class-level interceptors) or methods
of the target class (method-level interceptors).

The binding of interceptors to classes is additive. If interceptors are bound at the class level and/or
default level as well as at the method level, both class-level and/or default-level as well as method-level
interceptors will apply. The deployment descriptor may be used to augment the interceptors and
interceptor methods defined by means of annotations. When the deployment descriptor is used to
augment the interceptors specified in annotations, the interceptor methods specified in the
deployment descriptor will be invoked after those specified in annotations, according to the ordering
specified earlier. The interceptor-order deployment descriptor element may be used to override this
ordering.

The exclude-default-interceptors element disables default interceptors for the level at which it is
specified and lower. That is, exclude-default-interceptors when applied at the class level disables the
application of default interceptors for all methods of the class. The exclude-class-interceptors element
applied to a method disables the application of class-level interceptors for the given method. Explicitly
listing an excluded higher-level interceptor at a lower level causes it to be applied at that level and
below.

It is possible to override the ordering of interceptors by using the interceptor-order element to specify
a total ordering of interceptors at class level and/or method level. If the interceptor-order element is
used, the ordering specified at the given level must be a total order over all interceptor classes that
have been defined at that level and above (unless they have been explicitly excluded by means of one
of the exclude- elements described above).

There are four possible styles of the interceptor-binding element syntax:

Style 1:

7.8. Specification of Interceptors in the Deployment Descriptor

Final Jakarta® Enterprise Beans, Core Features 127

<interceptor-binding>
 <target-name>*</target-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
</interceptor-binding>

Specifying the target-name element as the wildcard value "*" designates default interceptors.

Style 2:

<interceptor-binding>
 <target-name>TARGETNAME</target-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
</interceptor-binding>

This style is used to refer to interceptors associated with the specified target class (class-level
interceptors).

Style 3:

<interceptor-binding>
 <target-name>TARGETNAME</target-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method-name>METHOD</method-name>
</interceptor-binding>

This style is used to associate a method-level interceptor with the specified method of the specified
target class. If there are multiple methods with the same overloaded name, the element of this style
refers to all the methods with the overloaded name. Note that the wildcard value "*" cannot be used to
specify method-level interceptors.

Style 4:

<interceptor-binding>
 <target-name>TARGETNAME</target-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-n</method-param>
 </method-params>
<interceptor-binding>

7.8. Specification of Interceptors in the Deployment Descriptor

128 Jakarta® Enterprise Beans, Core Features Final

This style is used to associate a method-level interceptor with the specified method of the specified
target class. This style is used to refer to a single method within a set of methods with an overloaded
name. The values PARAM-1 through PARAM-n are the fully-qualified Java types of the method’s input
parameters (if the method has no input arguments, the method-params element contains no method-param
elements). Arrays are specified by the array element’s type, followed by one or more pair of square
brackets (e.g. int[][]).

If both styles 3 and 4 are used to define method-level interceptors for the same bean, the relative
ordering of those method-level interceptors is undefined.

7.8.2.1. Examples

Examples of the usage of the interceptor-binding syntax are given below.

Style 1: The following interceptors are default interceptors. They will be invoked in the order
specified.

<interceptor-binding>
 <target-name>*</target-name>
 <interceptor-class>org.acme.MyDefaultIC</interceptor-class>
 <interceptor-class>org.acme.MyDefaultIC2</interceptor-class>
</interceptor-binding>

Style 2: The following interceptors are the class-level interceptors of the EmployeeService class. They
will be invoked in the order specified after any default interceptors.

<interceptor-binding>
 <target-name>EmployeeService</target-name>
 <interceptor-class>org.acme.MyIC</interceptor-class>
 <interceptor-class>org.acme.MyIC2</interceptor-class>
</interceptor-binding>

Style 3: The following interceptors apply to all the myMethod methods of the EmployeeService class. They
will be invoked in the order specified after any default interceptors and class-level interceptors.

<interceptor-binding>
 <target-name>EmployeeService</target-name>
 <interceptor-class>org.acme.MyIC</interceptor-class>
 <interceptor-class>org.acme.MyIC2</interceptor-class>
 <method-name>myMethod</method-name>
</interceptor-binding>

The following example illustrates more complex parameter types. The method myMethod(char s, int i,
int[] iar, mypackage.MyClass mycl, mypackage.MyClass[][] myclaar) would be specified as:

7.8. Specification of Interceptors in the Deployment Descriptor

Final Jakarta® Enterprise Beans, Core Features 129

<interceptor-binding>
 <target-name>EmployeeService</target-name>
 <interceptor-class>org.acme.MyIC</interceptor-class>
 <method-name>myMethod</method-name>
 <method-params>
 <method-param>char</method-param>
 <method-param>int</method-param>
 <method-param>int[]</method-param>
 <method-param>mypackage.MyClass</method-param>
 <method-param>mypackage.MyClass[][]</method-param>
 </method-params>
</interceptor-binding>

The following example illustrates constructor-level interceptors that apply to all constructors of the
EmployeeService class. They will be invoked in the order specified after any default interceptors and
class-level interceptors.

<interceptor-binding>
 <target-name>EmployeeService</target-name>
 <interceptor-class>org.acme.MyIC</interceptor-class>
 <interceptor-class>org.acme.MyIC2</interceptor-class>
 <method-name>EmployeeService</method-name>
</interceptor-binding>

Style 4: The following interceptor element refers to the myMethod(String firstName, String LastName)
method of the EmployeeService class.

<interceptor-binding>
 <target-name>EmployeeService</target-name>
 <interceptor-class>org.acme.MyIC</interceptor-class>
 <method-name>myMethod</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
</interceptor-binding>

The following example illustrates constructor-level interceptors that apply to the specific constructor
of the EmployeeService class.

7.8. Specification of Interceptors in the Deployment Descriptor

130 Jakarta® Enterprise Beans, Core Features Final

<interceptor-binding>
 <target-name>EmployeeService</target-name>
 <interceptor-class>org.acme.MyIC</interceptor-class>
 <interceptor-class>org.acme.MyIC2</interceptor-class>
 <method-name>EmployeeService</method-name>
 <method-params>
 <method-param>org.acme.Account</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
</interceptor-binding>

The following example illustrates the total ordering of interceptors using the interceptor-order
element:

<interceptor-binding>
 <target-name>EmployeeService</target-name>
 <interceptor-order>
 <interceptor-class>org.acme.MyIC
 </interceptor-class>
 <interceptor-class>org.acme.MyDefaultIC
 </interceptor-class>
 <interceptor-class>org.acme.MyDefaultIC2
 </interceptor-class>
 <interceptor-class>org.acme.MyIC2
 </interceptor-class>
 </interceptor-order>
</interceptor-binding>

[39] This restriction may be removed in a future release of this specification.
[40] See Singleton Session Bean Error Handling

7.8. Specification of Interceptors in the Deployment Descriptor

Final Jakarta® Enterprise Beans, Core Features 131

Chapter 8. Support for Transactions
One of the key features of the Enterprise Beans architecture is support for distributed transactions. The
Enterprise Beans architecture allows an application developer to write an application that atomically
updates data in multiple databases which may be distributed across multiple sites. The sites may use
Enterprise Beans servers from different vendors.

8.1. Overview
This section provides a brief overview of transactions and illustrates a number of transaction
scenarios in Enterprise Beans.

8.1.1. Transactions

Transactions are a proven technique for simplifying application programming. Transactions free the
application programmer from dealing with the complex issues of failure recovery and multi-user
programming. The transactional system ensures that a unit of work either fully completes, or the work is
fully rolled back. Furthermore, transactions make it possible for the programmer to design the
application as if it ran in an environment that executes units of work serially.

Support for transactions is an essential element of the Enterprise Beans architecture. The Enterprise
Bean Provider and the client application programmer are not exposed to the complexity of distributed
transactions. The Bean Provider can choose between using programmatic transaction demarcation in
the enterprise bean code (this style is called bean-managed transaction demarcation) or declarative
transaction demarcation performed automatically by the Enterprise Beans container (this style is
called container-managed transaction demarcation).

With bean-managed transaction demarcation, the enterprise bean code demarcates transactions using
the jakarta.transaction.UserTransaction interface. All resource manager accesses between the
UserTransaction.begin and UserTransaction.commit calls are part of a transaction.

The terms resource and resource manager used in this chapter refer to the resources declared
using the Resource annotation in the enterprise bean class or using the resource-ref element in the
enterprise bean’s deployment descriptor. This includes not only database resources, but also other
resources, such as Jakarta Messaging Connections. These resources are considered to be
"managed" by the container.[41] For a discussion about resources used in Jakarta Persistence that
may be "unaware" of the presence of Jakarta Transactions, see [3].

With container-managed transaction demarcation, the container demarcates transactions per
instructions provided by the developer in metadata annotations or in the deployment descriptor. These
instructions, called transaction attributes, tell the container whether it should include the work
performed by an enterprise bean method in a client’s transaction, run the enterprise bean method in a
new transaction started by the container, or run the method with "no transaction" (Refer to Handling

8.1. Overview

132 Jakarta® Enterprise Beans, Core Features Final

of Methods that Run with "an unspecified transaction context" for the description of the "no
transaction" case).

Regardless of whether an enterprise bean uses bean-managed or container-managed transaction
demarcation, the burden of implementing transaction management is on the Enterprise Beans
Container and Server Provider. The Enterprise Beans container and server implement the necessary
low-level transaction protocols, such as the two-phase commit protocol between a transaction manager
and a database system or messaging provider, transaction context propagation, and distributed two-
phase commit.

Many applications will consist of one or several enterprise beans that all use a single resource manager
(typically a relational database management system). The Enterprise Beans container can make use of
resource manager local transactions as an optimization technique for enterprise beans for which
distributed transactions are not needed. A resource manager local transaction does not involve control or
coordination by an external transaction manager. The container’s use of local transactions as an
optimization technique for enterprise beans with either container-managed transaction demarcation or
bean-managed transaction demarcation is not visible to the enterprise beans. For a discussion of the use
of resource manager local transactions as a container optimization strategy, refer to [18] and [16].

8.1.2. Transaction Model

The Enterprise Beans architecture supports flat transactions. A flat transaction cannot have any child
(nested) transactions.

Note: The decision not to support nested transactions allows vendors of existing transaction
processing and database management systems to incorporate support for Enterprise Beans. If these
vendors provide support for nested transactions in the future, Enterprise Beans may be enhanced to
take advantage of nested transactions.

8.1.3. Relationship to Jakarta Transactions

The Jakarta® Transactions [17] is a specification of the interfaces between a transaction manager and
the other parties involved in a distributed transaction processing system: the application programs, the
resource managers, and the application server.

The Java Transaction Service (JTS) [19] API is a Java binding of the CORBA Object Transaction Service
(OTS) 1.1 specification. JTS provides transaction interoperability using the standard IIOP protocol for
transaction propagation between servers. The JTS API is intended for vendors who implement
transaction processing infrastructure for enterprise middleware. For example, an Enterprise Beans
server vendor may use a JTS implementation as the underlying transaction manager.

The Enterprise Beans architecture does not require the Enterprise Beans container to support the JTS
interfaces. The Enterprise Beans architecture requires that the Enterprise Beans container support the
Jakarta Transactions API defined in [17] and the Jakarta Connectors APIs defined in [16].

8.1. Overview

Final Jakarta® Enterprise Beans, Core Features 133

8.2. Sample Scenarios
This section describes several scenarios that illustrate the distributed transaction capabilities of the
Enterprise Beans architecture.

8.2.1. Update of Multiple Databases

The Enterprise Beans architecture makes it possible for an application program to update data in
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data using two database
connections that the Deployer configured to connect with two different databases, A and B. Then X calls
another enterprise bean, Y. Bean Y updates data in database C. The Enterprise Beans server ensures that
the updates to databases A, B, and C are either all committed or all rolled back.

Enterprise Bean Server

Client X Y

database A database B database C

Figure 10. Updates to Simultaneous Databases

The application programmer does not have to do anything to ensure transactional semantics. Behind the
scenes, the Enterprise Beans server enlists the database connections as part of the transaction. When the
transaction commits, the Enterprise Beans server and the database systems perform a two-phase commit
protocol to ensure atomic updates across all three databases.

8.2.2. Messages Sent or Received Over Jakarta Messaging Sessions and Update
of Multiple Databases

The Enterprise Beans architecture makes it possible for an application program to send messages to or
receive messages from one or more Jakarta Messaging Destinations and/or to update data in one or
more databases in a single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X sends a message to a Jakarta
Messaging queue A and updates data in a database B using connections that the Deployer configured to

8.2. Sample Scenarios

134 Jakarta® Enterprise Beans, Core Features Final

connect with a Jakarta Messaging provider and a database. Then X calls another enterprise bean, Y. Bean
Y updates data in database C. The Enterprise Beans server ensures that the operations on A, B, and C are
either all committed, or all rolled back.

Enterprise Bean Server

Client X Y

queue A

database B database C

Figure 11. Message Sent to Jakarta Messaging Queue and Updates to Multiple Databases

The application programmer does not have to do anything to ensure transactional semantics. The
enterprise beans X and Y perform the message send and database updates using the standard Jakarta
Messaging and JDBC™ APIs. Behind the scenes, the Enterprise Beans server enlists the session on the
connection to the Jakarta Messaging provider and the database connections as part of the transaction.
When the transaction commits, the Enterprise Beans server and the messaging and database systems
perform a two-phase commit protocol to ensure atomic updates across all the three resources.

In the following figure, a client sends a message to the Jakarta Messaging queue A serviced by the
message-driven bean X. Bean X updates data using two database connections that the Deployer
configured to connect with two different databases, B and C. The Enterprise Beans server ensures that the
dequeuing of the Jakarta Messaging message, its receipt by bean X, and the updates to databases B and C
are either all committed or all rolled back.

8.2. Sample Scenarios

Final Jakarta® Enterprise Beans, Core Features 135

Enterprise Bean Server

Client queue A X

database B database C

Figure 12. Message Sent to Jakarta Messaging Queue Serviced by Message-Driven Bean and Updates to Multiple
Databases

8.2.3. Update of Databases via Multiple Enterprise Beans Servers

The Enterprise Beans architecture allows updates of data at multiple sites to be performed in a single
transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data in database A, and
then calls another enterprise bean Y that is installed in a remote Enterprise Beans server. Bean Y updates
data in database B. The Enterprise Beans architecture makes it possible to perform the updates to
databases A and B in a single transaction.

Client

Enterprise Bean Server

X

database A

Enterprise Bean Server

Y

database B

Figure 13. Updates to Multiple Databases in Same Transaction

When X invokes Y, the two Enterprise Beans servers cooperate to propagate the transaction context from
X to Y. This transaction context propagation is transparent to the application-level code.

8.2. Sample Scenarios

136 Jakarta® Enterprise Beans, Core Features Final

At transaction commit time, the two Enterprise Beans servers use a distributed two-phase commit
protocol (if the capability exists) to ensure the atomicity of the database updates.

8.2.4. Client-Managed Demarcation

A Java client can use the jakarta.transaction.UserTransaction interface to explicitly demarcate
transaction boundaries. The client program obtains the jakarta.transaction.UserTransaction interface
through dependency injection or lookup in the bean’s EJBContext or in the JNDI name space.

A client program using explicit transaction demarcation may perform, via enterprise beans, atomic
updates across multiple databases residing at multiple Enterprise Beans servers, as illustrated in the
following figure.

Client

begin

commit

Enterprise Bean Server

X
database A

Enterprise Bean Server

Y
database B

Figure 14. Updates on Multiple Databases on Multiple Servers

The application programmer demarcates the transaction with begin and commit calls. If the enterprise
beans X and Y are configured to use a client transaction (i.e., their methods have transaction attributes
that either require or support an existing transaction context), the Enterprise Beans server ensures that
the updates to databases A and B are made as part of the client’s transaction.

8.2.5. Container-Managed Demarcation

Whenever a client invokes a method on an enterprise bean’s business interface, on the bean no-
interface view, on a home or component interface, or a message listener method, the container
interposes on the method invocation. The interposition allows the container to control transaction
demarcation declaratively through the transaction attribute set by the developer. (See Specification of
the Transaction Attributes for a Bean’s Methods for a description of transaction attributes.)

8.2. Sample Scenarios

Final Jakarta® Enterprise Beans, Core Features 137

For example, if a session bean method is configured with the REQUIRED transaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, the
container automatically initiates a transaction whenever a client invokes an enterprise bean method
that requires a transaction context. If the client request contains a transaction context, the container
includes the enterprise bean method in the client transaction.

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise bean X,
and the invoked method has the REQUIRED [42] transaction attribute. Because the invocation from the client
does not include a transaction context, the container starts a new transaction before dispatching the
method on X. Bean X’s work is performed in the context of the transaction. When X calls other enterprise
beans (Y in our example), the work performed by the other enterprise beans is also automatically
included in the transaction (subject to the transaction attribute of the other enterprise bean).

Client

Enterprise Bean Server

begin

commit
X

database A

Y

database B

Figure 15. Update of Multiple Databases from Non-Transactional Client

The container automatically commits the transaction at the time X returns a reply to the client.

If a message-driven bean’s message listener method is configured with the REQUIRED transaction
attribute, the container automatically starts a new transaction before the delivery of the message and,
hence, before the invocation of the method.[43]

Jakarta Messaging requires that the transaction be started before the dequeuing of the message.
See [20].

The container automatically enlists the resource manager associated with the arriving message and all
the resource managers accessed by the message listener method with the transaction.

It is illegal to associate Jakarta Transactions transactional interceptors (see [17]) with Enterprise Beans.
[44]

8.2. Sample Scenarios

138 Jakarta® Enterprise Beans, Core Features Final

8.3. Bean Provider’s Responsibilities
This section describes the Bean Provider’s view of transactions and defines the Bean Provider’s
responsibilities.

8.3.1. Bean-Managed Versus Container-Managed Transaction Demarcation

When designing an enterprise bean, the developer must decide whether the enterprise bean will
demarcate transactions programmatically in the business methods (bean-managed transaction
demarcation), or whether the transaction demarcation is to be performed by the container based on
the transaction attributes specified in metadata annotations or in the deployment descriptor
(container-managed transaction demarcation). Typically enterprise beans will be specified to have
container-managed transaction demarcation. This is the default if no transaction management type is
specified.

A session bean or a message-driven bean can be designed with bean-managed transaction
demarcation or with container-managed transaction demarcation. (But it cannot be both at the same
time.)

An enterprise bean instance can access resource managers in a transaction only in the enterprise
bean’s methods in which there is a transaction context available.

8.3.1.1. Non-Transactional Execution

Some enterprise beans may need to access resource managers that do not support an external
transaction coordinator. The container cannot manage the transactions for such enterprise beans in
the same way that it can for the enterprise beans that access resource managers that support an
external transaction coordinator.

If an enterprise bean needs to access a resource manager that does not support an external transaction
coordinator, the Bean Provider should design the enterprise bean with container-managed transaction
demarcation and assign the NOT_SUPPORTED transaction attribute to the bean class or to all the bean’s
methods. The Enterprise Beans architecture does not specify the transactional semantics of the
enterprise bean methods. See Handling of Methods that Run with "an unspecified transaction context"
for how the container implements this case.

8.3.2. Isolation Levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of work
from each other, provided that the system allows concurrent execution of multiple units of work.

The isolation level describes the degree to which the access to a resource manager by a transaction is
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in enterprise beans.

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 139

• The API for managing an isolation level is resource-manager-specific. (Therefore, the Enterprise
Beans architecture does not define an API for managing isolation levels.)

• If an enterprise bean uses multiple resource managers, the Bean Provider may specify the same or
different isolation level for each resource manager. This means, for example, that if an enterprise
bean accesses multiple resource managers in a transaction, access to each resource manager may
be associated with a different isolation level.

• The Bean Provider must take care when setting an isolation level. Most resource managers require
that all accesses to the resource manager within a transaction are done with the same isolation
level. An attempt to change the isolation level in the middle of a transaction may cause undesirable
behavior, such as an implicit sync point (a commit of the changes done so far).

• For session beans and message-driven beans with bean-managed transaction demarcation, the
Bean Provider can specify the desirable isolation level programmatically in the enterprise bean’s
methods, using the resource-manager specific API. For example, the Bean Provider can use the
java.sql.Connection.setTransactionIsolation method to set the appropriate isolation level for
database access.

• Additional care must be taken if multiple enterprise beans access the same resource manager in
the same transaction. Conflicts in the requested isolation levels must be avoided.

8.3.3. Enterprise Beans Using Bean-Managed Transaction Demarcation

This subsection describes the requirements for the Bean Provider of an enterprise bean with bean-
managed transaction demarcation.

The enterprise bean with bean-managed transaction demarcation must be a session bean or a
message-driven bean.

An instance that starts a transaction must complete the transaction before it starts a new transaction.

The Bean Provider uses the UserTransaction interface to demarcate transactions. All updates to the
resource managers between the UserTransaction.begin and UserTransaction.commit methods are
performed in a transaction. While an instance is in a transaction, the instance must not attempt to use
the resource-manager specific transaction demarcation API (e.g. it must not invoke the commit or
rollback method on the java.sql.Connection interface or on the jakarta.jms.Session interface).[45]

A stateful session bean instance may, but is not required to, commit a started transaction before a
business method returns. If a transaction has not been completed by the end of a business method, the
container retains the association between the transaction and the instance across multiple client calls
until the instance eventually completes the transaction. A stateful session bean instance must commit a
transaction before PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback
interceptor method returns.

A stateless session bean instance must commit a transaction before a business method or timeout
callback method returns.

8.3. Bean Provider’s Responsibilities

140 Jakarta® Enterprise Beans, Core Features Final

A singleton session bean instance must commit a transaction before a business method or timeout
callback method or PostConstruct or PreDestroy lifecycle callback interceptor method returns.

A message-driven bean instance must commit a transaction before a message listener method or
timeout callback method returns.

If AroundInvoke interceptor methods are applied to the business method or AroundTimeout interceptor
methods are applied to the timeout callback method of a singleton or a stateless session bean or a
message-driven bean, the transaction must be completed before the last AroundInvoke or AroundTimeout
interceptor method completes.

The following code segments illustrate a business method that performs a transaction involving two
database connections.

@Stateless
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {
 @Resource
 jakarta.transaction.UserTransaction ut;

 @Resource
 javax.sql.DataSource database1;

 @Resource
 javax.sql.DataSource database2;

 public void someMethod(...) {
 java.sql.Connection con1;
 java.sql.Connection con2;
 java.sql.Statement stmt1;
 java.sql.Statement stmt2;

 try {
 // obtain con1 object and set it up for transactions
 con1 = database1.getConnection();
 stmt1 = con1.createStatement();

 // obtain con2 object and set it up for transactions
 con2 = database2.getConnection();
 stmt2 = con2.createStatement();

 // Now do a transaction that involves con1 and con2.

 // start the transaction
 ut.begin();

 // Do some updates to both con1 and con2. The container

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 141

 // automatically enlists con1 and con2 with the
 // transaction.
 stmt1.executeQuery(...);
 stmt1.executeUpdate(...);
 stmt2.executeQuery(...);
 stmt2.executeUpdate(...);
 stmt1.executeUpdate(...);
 stmt2.executeUpdate(...);

 // commit the transaction
 ut.commit();
 } catch (...) {
 // handle exceptions
 ...
 } finally {
 // release connections
 con1.close();
 con2.close();
 ...
 }
 }
 ...
}

The following code segments illustrate a business method that performs a transaction involving both a
database connection and a Jakarta Messaging connection.

@Stateless
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

 @Resource
 jakarta.transaction.UserTransaction ut;

 @Resource
 javax.sql.DataSource database1;

 @Resource
 jakarta.jms.QueueConnectionFactory qcf1;

 @Resource
 jakarta.jms.Queue queue1;

 public void someMethod(...) {
 java.sql.Connection dcon;
 java.sql.Statement stmt;
 jakarta.jms.QueueConnection qcon;

8.3. Bean Provider’s Responsibilities

142 Jakarta® Enterprise Beans, Core Features Final

 jakarta.jms.QueueSession qsession;
 jakarta.jms.QueueSender qsender;
 jakarta.jms.Message message;

 try {
 // obtain db conn object and set it up for transactions
 dcon = database1.getConnection();
 stmt = dcon.createStatement();

 // obtain jms conn object and set up session for
 // transactions
 qcon = qcf1.createQueueConnection();
 qsession = qcon.createQueueSession(true,0);
 qsender = qsession.createSender(queue1);
 message = qsession.createTextMessage();
 message.setText("some message");

 // Now do a transaction that involves both connections

 // start the transaction
 ut.begin();

 // Do database updates and send message. The container
 // automatically enlists dcon and qsession with the
 // transaction.
 stmt.executeQuery(...);
 stmt.executeUpdate(...);
 stmt.executeUpdate(...);
 qsender.send(message);

 // commit the transaction
 ut.commit();
 } catch (...) {
 // handle exception s
 ...
 } finally {
 // release connections
 dcon.close();
 qcon.close();
 ...
 }
 }
 ...
}

The following code segments illustrate a stateful session bean that retains a transaction across three
client calls, invoked in the following order: method1, method2, and method3.[46]

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 143

@Stateful
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {
 @Resource
 jakarta.transaction.UserTransaction ut;

 @Resource
 javax.sql.DataSource database1;

 @Resource
 javax.sql.DataSource database2;

 java.sql.Connection con1;
 java.sql.Connection con2;

 public void method1(...) {
 java.sql.Statement stmt;

 // start a transaction
 ut.begin();

 // make some updates on con1
 con1 = database1.getConnection();
 stmt = con1.createStatement();
 stmt.executeUpdate(...);
 stmt.executeUpdate(...);

 // The container retains the transaction associated with the
 // instance to the next client call (which is method2(...)).
 }
 public void method2(...) {
 java.sql.Statement stmt;

 con2 = database2.getConnection();
 stmt = con2.createStatement();
 stmt.executeUpdate(...);
 stmt.executeUpdate(...);

 // The container retains the transaction associated with the
 // instance to the next client call (which is method3(...)).
 }

 public void method3(...) {
 java.sql.Statement stmt;

 // make some more updates on con1 and con2
 stmt = con1.createStatement();

8.3. Bean Provider’s Responsibilities

144 Jakarta® Enterprise Beans, Core Features Final

 stmt.executeUpdate(...);
 stmt = con2.createStatement();
 stmt.executeUpdate(...);

 try {
 // commit the transaction
 ut.commit();
 } finally {
 // release connections
 con1.close();
 con2.close();
 ...
 }
 }
 ...
}

It is possible for an enterprise bean to open and close a database connection in each business method
(rather than hold the connection open until the end of transaction). The following code segments
illustrate a stateful session bean for which the client executes the sequence of methods (method1,
method2, method2, method2, and method3). In this scenario, all the database updates done by the multiple
invocations of method2 are performed in the scope of the same transaction, which is the transaction
started in method1 and committed in method3.

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 145

@Stateful
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {
 @Resource
 jakarta.transaction.UserTransaction ut;

 @Resource
 javax.sql.DataSource database1;

 public void method1(...) {
 // start a transaction
 ut.begin();
 }

 public void method2(...) {
 java.sql.Connection con;
 java.sql.Statement stmt;

 try {
 // open connection
 con = database1.getConnection();

 // make some updates on con
 stmt = con.createStatement();
 stmt.executeUpdate(...);
 stmt.executeUpdate(...);
 } finally {
 // close the connection
 con.close();
 ...
 }
 }
 public void method3(...) {
 // commit the transaction
 ut.commit();
 }
 ...
}

8.3.3.1. getRollbackOnly and setRollbackOnly Methods

An enterprise bean with bean-managed transaction demarcation must not use the getRollbackOnly and
setRollbackOnly methods of the EJBContext interface.

An enterprise bean with bean-managed transaction demarcation has no need to use these methods,
because of the following reasons:

8.3. Bean Provider’s Responsibilities

146 Jakarta® Enterprise Beans, Core Features Final

• An enterprise bean with bean-managed transaction demarcation can obtain the status of a
transaction by using the getStatus method of the jakarta.transaction.UserTransaction interface.

• An enterprise bean with bean-managed transaction demarcation can rollback a transaction using
the rollback method of the jakarta.transaction.UserTransaction interface.

8.3.4. Enterprise Beans Using Container-Managed Transaction Demarcation

This subsection describes the requirements for the Bean Provider of an enterprise bean using
container-managed transaction demarcation.

The enterprise bean’s business methods, message listener methods, business method interceptor
methods, lifecycle callback interceptor methods, or timeout callback methods must not use any
resource-manager specific transaction management methods that would interfere with the container’s
demarcation of transaction boundaries. For example, the enterprise bean methods must not use the
following methods of the java.sql.Connection interface: commit, setAutoCommit, and rollback; or the
following methods of the jakarta.jms.Session interface: commit and rollback.

The enterprise bean’s business methods, message listener methods, business method interceptor
methods, lifecycle callback interceptor methods, or timeout callback methods must not attempt to
obtain or use the jakarta.transaction.UserTransaction interface.

The following code segments illustrate a business method in an enterprise bean with container-
managed transaction demarcation. The business method updates two databases using JDBC™
connections. The container provides transaction demarcation as specified by the transaction attribute.
[47]

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 147

@Stateless
public class MySessionBean implements MySession {
 ...
 @TransactionAttribute(REQUIRED)
 public void someMethod(...) {
 java.sql.Connection con1;
 java.sql.Connection con2;
 java.sql.Statement stmt1;
 java.sql.Statement stmt2;

 try {
 // obtain con1 and con2 connection objects
 con1 = ...;
 con2 = ...;
 stmt1 = con1.createStatement();
 stmt2 = con2.createStatement();

 // Perform some updates on con1 and con2. The container
 // automatically enlists con1 and con2 with the
 // container-managed transaction.
 stmt1.executeQuery(...);
 stmt1.executeUpdate(...);
 stmt2.executeQuery(...);
 stmt2.executeUpdate(...);
 stmt1.executeUpdate(...);
 stmt2.executeUpdate(...);
 } finally {
 // release connections
 con1.close();
 con2.close();
 ...
 }
 }
 ...
}

8.3.4.1. jakarta.ejb.SessionSynchronization Interface

A stateful session bean with container-managed transaction demarcation can optionally implement
the jakarta.ejb.SessionSynchronization interface or use the session synchronization annotations. Their
use is described in The Session Synchronization Notifications for Stateful Session Beans.

8.3.4.2. jakarta.ejb.EJBContext.setRollbackOnly Method

An enterprise bean with container-managed transaction demarcation can use the setRollbackOnly
method of its EJBContext object to mark the transaction such that the transaction can never commit.

8.3. Bean Provider’s Responsibilities

148 Jakarta® Enterprise Beans, Core Features Final

Typically, an enterprise bean marks a transaction for rollback to protect data integrity before throwing
an application exception, if the application exception class has not been specified to automatically
cause the container to rollback the transaction.

For example, an AccountTransfer bean which debits one account and credits another account could mark
a transaction for rollback if it successfully performs the debit operation, but encounters a failure during
the credit operation.

8.3.4.3. jakarta.ejb.EJBContext.getRollbackOnly method

An enterprise bean with container-managed transaction demarcation can use the getRollbackOnly
method of its EJBContext object to test if the current transaction has been marked for rollback. The
transaction might have been marked for rollback by the enterprise bean itself, by other enterprise
beans, or by other components (outside of the Enterprise Beans specification scope) of the transaction
processing infrastructure.

8.3.5. Use of Jakarta Messaging APIs in Transactions

The Bean Provider should not make use of the Jakarta Messaging request/reply paradigm (sending of a
Jakarta Messaging message, followed by the synchronous receipt of a reply to that message) within a
single transaction. Because a Jakarta Messaging message is typically not delivered to its final
destination until the transaction commits, the receipt of the reply within the same transaction will not
take place.

Because the container manages the transactional enlistment of Jakarta Messaging sessions on behalf of
a bean, the parameters of the createSession(boolean transacted, int acknowledgeMode),
createQueueSession(boolean transacted, int acknowledgeMode) and createTopicSession(boolean

transacted, int acknowledgeMode) methods are ignored. It is recommended that the Bean Provider
specify that a session is transacted, but provide 0 for the value of the acknowledgment mode.

The Bean Provider should not use the Jakarta Messaging acknowledge method either within a
transaction or within an unspecified transaction context. Message acknowledgment in an unspecified
transaction context is handled by the container. Handling of Methods that Run with "an unspecified
transaction context" describes some of the techniques that the container can use for the
implementation of a method invocation with an unspecified transaction context.

8.3.6. Specification of a Bean’s Transaction Management Type

By default, a session bean or message-driven bean has container managed transaction demarcation if
the transaction management type is not specified. The Bean Provider of a session bean or a message-
driven bean can use the TransactionManagement annotation to declare whether the session bean or
message-driven bean uses bean-managed or container-managed transaction demarcation. The value of
the TransactionManagement annotation is either CONTAINER or BEAN. The TransactionManagement annotation
is applied to the enterprise bean class.

Alternatively, the Bean Provider can use the transaction-type deployment descriptor element to

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 149

specify the bean’s transaction management type. If the deployment descriptor is used, it is only
necessary to explicitly specify the bean’s transaction management type if bean-managed transaction is
used.

The transaction management type of a bean is determined by the Bean Provider. The Application
Assembler is not permitted to use the deployment descriptor to override a bean’s transaction
management type regardless of whether it has been explicitly specified or defaulted by the Bean
Provider. (See Deployment Descriptor for information about the deployment descriptor.)

8.3.7. Specification of the Transaction Attributes for a Bean’s Methods

The Bean Provider of an enterprise bean with container-managed transaction demarcation may
specify the transaction attributes for the enterprise bean’s methods. By default, the value of the
transaction attribute for a method of a bean with container-managed transaction demarcation is the
REQUIRED transaction attribute, and the transaction attribute does not need to be explicitly specified in
this case.

A transaction attribute is a value associated with each of the following methods

• a method of a bean’s business interface

• a method exposed through the bean class no-interface view

• a message listener method of a message-driven bean

• a timeout callback method

• a stateless or singleton session bean’s web service endpoint method

• for beans written to the Enterprise Beans 2.1 and earlier client view, a method of a session bean’s
home or component interface

• a PostConstruct or PreDestroy lifecycle callback interceptor method of a singleton session bean

• a PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback interceptor method of a
stateful session bean

The transaction attribute specifies how the container must manage transactions for a method when a
client invokes the method.

Transaction attributes are specified for the following methods:

• For a session bean written to the Enterprise Beans 3.x client view API, the transaction attributes are
specified for those methods of the session bean class that correspond to the bean’s business
interface, the direct and indirect superinterfaces of the business interface, methods exposed
through the bean class no-interface view, and for the timeout callback methods, if any.

• For a stateless session bean or singleton session bean that provides a web service client view, the
transaction attributes are specified for the bean’s web service endpoint methods, and for the
timeout callback methods, if any.

• For a singleton session bean, the transaction attributes are specified for the PostConstruct and

8.3. Bean Provider’s Responsibilities

150 Jakarta® Enterprise Beans, Core Features Final

PreDestroy lifecycle callback interceptor methods, if any. In order to specify the transaction
attribute for a PostConstuct or PreDestroy method of a singleton session bean, the transaction
attribute must be specified for the method(s) on the bean class, rather than for a superclass or
PostConstruct or PreDestroy interceptor method.

• For a stateful session bean, the transaction attributes are specified for the PostConstruct,
PreDestroy, PrePassivate or PostActivate lifecycle callback interceptor methods, if any. In order to
specify the transaction attribute for a PostConstruct, PreDestroy, PrePassivate or PostActivate
method of a stateful session bean, the transaction attribute must be specified for the method(s) on
the bean class, rather than for a superclass or PostConstruct, PreDestroy, PrePassivate or
PostActivate interceptor method.

• For a message-driven bean, the transaction attributes are specified for the message
listenermethods on the message-driven bean class and for the timeout callback methods, if any.

• For a session bean written to the Enterprise Beans 2.1 and earlier client view, the transaction
attributes are specified for the methods of the component interface and all the direct and indirect
superinterfaces of the component interface, excluding the methods of the jakarta.ejb.EJBObject or
jakarta.ejb.EJBLocalObject interface; and for the timeout callback methods, if any. Transaction
attributes must not be specified for the methods of a session bean’s home interface.

By default, if a TransactionAttribute annotation is not specified for a method of an enterprise bean
with container-managed transaction demarcation, the value of the transaction attribute for the
method is defined to be REQUIRED. The rules for the specification of transaction attributes are defined in
Specification of Transaction Attributes with Metadata Annotations.

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to
specify the transaction attributes or as a means to supplement or override metadata annotations for
transaction attributes. If a transaction attribute value is not specified in the deployment descriptor, it is
assumed that the transaction attribute specified in annotations applies, or—in the case that no
annotation has been specified—that the value is Required.

The Application Assembler is permitted to override the transaction attribute values using the bean’s
deployment descriptor. The Deployer is also permitted to override the transaction attribute values at
deployment time. Caution should be exercised when overriding the transaction attributes of an
application, as the transactional structure of an application is typically intrinsic to the semantics of the
application.

Enterprise Beans defines the following values for the TransactionAttribute metadata annotation:

• MANDATORY

• REQUIRED

• REQUIRES_NEW

• SUPPORTS

• NOT_SUPPORTED

• NEVER

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 151

The deployment descriptor values that correspond to these annotation values are the following:

• Mandatory

• Required

• RequiresNew

• Supports

• NotSupported

• Never

In this chapter, we use the TransactionAttribute annotation values to refer to transaction attributes. As
noted, however, the deployment descriptor may be used.

Refer to Container-Managed Transaction Demarcation for Business Methods for the specification of
how the value of the transaction attribute affects the transaction management performed by the
container.

For a message-driven bean’s message listener methods (or interface), only the REQUIRED and
NOT_SUPPORTED transaction attributes may be used.

For an enterprise bean’s timeout callback methods, only the REQUIRED, REQUIRES_NEW and NOT_SUPPORTED
transaction attributes may be used.

For a session bean’s asynchronous business methods, only the REQUIRED, REQUIRES_NEW, and
NOT_SUPPORTED transaction attributes may be used.

For a singleton session bean’s PostConstruct and PreDestroy lifecycle callback interceptor methods,
only the REQUIRED, REQUIRES_NEW, and NOT_SUPPORTED transaction attributes may be used.

For a stateful session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback
interceptor methods, only the REQUIRES_NEW and NOT_SUPPORTED transaction attributes may be used.

If an enterprise bean implements the jakarta.ejb.SessionSynchronization interface or uses any of the
session synchronization annotations, only the following values may be used for the transaction
attributes of the bean’s methods: REQUIRED, REQUIRES_NEW, MANDATORY.[48]

The above restriction is necessary to ensure that the enterprise bean is invoked only in a transaction. If
the bean were invoked without a transaction, the container would not be able to send the transaction
synchronization calls.

8.3.7.1. Specification of Transaction Attributes with Metadata Annotations

The following rules apply for the specification of transaction attributes using Java language metadata
annotations.

The TransactionAttribute annotation is used to specify a transaction attribute. The value of the

8.3. Bean Provider’s Responsibilities

152 Jakarta® Enterprise Beans, Core Features Final

transaction attribute annotation is given by the enum TransactionAttributeType:

public enum TransactionAttributeType {
 MANDATORY,
 REQUIRED,
 REQUIRES_NEW,
 SUPPORTS,
 NOT_SUPPORTED,
 NEVER
}

The transaction attributes for the methods of a bean class may be specified on the class, the business
methods of the class, or both.

Specifying the TransactionAttribute annotation on the bean class means that it applies to all applicable
business interface methods of the class. If the transaction attribute type is not specified, it is assumed
to be REQUIRED. The absence of a transaction attribute specification on the bean class is equivalent to
the specification of TransactionAttribute(REQUIRED) on the bean class.

A transaction attribute may be specified on a method of the bean class to override the transaction
attribute value explicitly or implicitly specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

• A transaction attribute specified on a superclass S applies to the business methods defined by S. If a
class-level transaction attribute is not specified on S, it is equivalent to specification of
TransactionAttribute(REQUIRED) on S.

• A transaction attribute may be specified on a business method M defined by class S to override for
method M the transaction attribute value explicitly or implicitly specified on the class S.

• If a method M of class S overrides a business method defined by a superclass of S, the transaction
attribute of M is determined by the above rules as applied to class S.

Example:

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 153

@TransactionAttribute(SUPPORTS)
public class SomeClass {
 public void aMethod() {...}
 public void bMethod() {...}
 ...
}

@Stateless
public class ABean extends SomeClass implements A {
 public void aMethod() {...}

 @TransactionAttribute(REQUIRES_NEW)
 public void cMethod() {...}
 ...
}

Assuming aMethod, bMethod, cMethod are methods of interface A, their transaction attributes are REQUIRED,
SUPPORTS, and REQUIRES_NEW respectively.

8.3.7.2. Specification of Transaction Attributes in the Deployment Descriptor

The following rules apply for the specification of transaction attributes in the deployment descriptor.
(See Deployment Descriptor XML Schema for the complete syntax of the deployment descriptor.)

Note that even in the absence of the use of annotations, it is not necessary to explicitly specify
transaction attributes for all of the methods listed in Specification of the Transaction Attributes for a
Bean’s Methods. If a transaction attribute is not specified for a method in an Enterprise Beans
deployment descriptor, the transaction attribute defaults to Required.

If the deployment descriptor is used to override annotations, and transaction attributes are not
specified for some methods, the values specified in annotations (whether explicit or defaulted) will
apply for those methods.

Use of the container-transaction element

The container-transaction element may be used to define the transaction attributes for the following
methods:

• business interface methods

• home interface methods

• component interface methods

• message-listener interface methods

• no-interface view methods

• web service endpoint methods

8.3. Bean Provider’s Responsibilities

154 Jakarta® Enterprise Beans, Core Features Final

• singleton PostConstruct and PreDestroy methods

• stateful session bean PostConstruct, PreDestroy, PrePassivate or PostActivate methods (see
limitations)

• timeout callback methods

Each container-transaction element consists of a list of one or more method elements, and the trans-
attribute element. The container-transaction element specifies that all the listed methods are assigned
the specified transaction attribute value. It is required that all the methods specified in a single
container-transaction element be methods of the same enterprise bean.

The method element uses the ejb-name, method-intf, method-name, and method-params elements to denote
one or more methods.

The optional method-intf element can be used to differentiate between methods with the same name
and signature that are multiply defined across the business, component, and home interfaces, web
service endpoint, no-interface view, singleton and stateful session bean lifecycle callbacks, and/or
timeout callbacks. However, if the same method is a method of a local business interface, local
component interface, or no-interface view, the same transaction attribute applies to the method for all
of them. Likewise, if the same method is a method of both a remote business interface and the remote
component interface, the same transaction attribute applies to the method for both interfaces.

There are three legal styles of composing the method element:

Style 1:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
</method>

This style is used to specify a default value of the transaction attribute for the following methods, if
any, of the specified enterprise bean for which there is no Style 2 or Style 3 element specified:

• All methods of the business, home, or component interface

• All no-interface view methods

• All message listener methods

• Web service endpoint methods

• Singleton PostConstruct and PreDestroy methods

• All timeout callback methods

There must be at most one container-transaction element that uses the Style 1 method element for a
given enterprise bean, unless the method-intf element is used with this style.

8.3. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 155

This style may be used for stateful session bean lifecycle callback methods to specify their transaction
attributes if used with the method-intf element value LifecycleCallback.

Style 2:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
</method>

This style is used for referring to a specified method of a business, home, or component interface
method; no-interface view method; message listener method; web service endpoint method; singleton
PostConstruct and PreDestroy methods; or timeout callback method of the specified enterprise bean. If
there are multiple methods with the same overloaded name, this style refers to all the methods with
the same name.

There must be at most one container-transaction element that uses the Style 2 method element for a
given method name, unless the method-intf element is used with this style. If there is also a container-
transaction element that uses Style 1 element for the same bean, the value specified by the Style 2
element takes precedence.

This style may be used to refer to stateful session bean PostConstruct, PreDestroy, PrePassivate or
PostActivate methods to specify their transaction attributes if any of the following is true:

• There is only one method with this name in the specified enterprise bean

• All overloaded methods with this name in the specified enterprise bean are lifecycle callback
methods

• The method-intf element is specified and it contains LifecycleCallback as the value

Style 3:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAMETER_1</method-param>
 ...
 <method-param>PARAMETER_N</method-param>
 </method-params>
</method>

This style is used to refer to a single method within a set of methods with an overloaded name. If there
is also a container-transaction element that uses the Style 2 element for the method name, or the Style
1 element for the bean, the value specified by the Style 3 element takes precedence.

8.3. Bean Provider’s Responsibilities

156 Jakarta® Enterprise Beans, Core Features Final

The following is an example of the specification of the transaction attributes in the deployment
descriptor. The updatePhoneNumber method of the EmployeeRecord enterprise bean is assigned the
transaction attribute Mandatory; all other methods of the EmployeeRecord bean are assigned the attribute
Required. All the methods of the enterprise bean AardvarkPayroll are assigned the attribute RequiresNew.

<ejb-jar>
 ...
 <assembly-descriptor>
 ...
 <container-transaction>
 <method>
 <ejb-name>EmployeeRecord</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>EmployeeRecord</ejb-name>
 <method-name>updatePhoneNumber</method-name>
 </method>
 <trans-attribute>Mandatory</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

8.4. Application Assembler’s Responsibilities
This section describes the view and responsibilities of the Application Assembler.

There is no mechanism for an Application Assembler to affect enterprise beans with bean-managed
transaction demarcation. The Application Assembler must not define transaction attributes for an
enterprise bean with bean-managed transaction demarcation.

The Application Assembler can use the deployment descriptor transaction attribute mechanism
described above to override or change the transaction attributes for enterprise beans using container-
managed transaction demarcation.

8.4. Application Assembler’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 157

The Application Assembler should exercise caution in the changing the transaction attributes, as
the behavior specified by the transaction attributes is typically an intrinsic part of the semantics of
an application.

8.5. Deployer’s Responsibilities
The Deployer is permitted to override or change the values of transaction attributes at deployment
time.

The Deployer should exercise caution in the changing the transaction attributes, as the behavior
specified by the transaction attributes is typically an intrinsic part of the semantics of an
application.

Compatibility Note: For applications written to the Enterprise Beans 2.1 specification (and earlier), the
Deployer is responsible for ensuring that the methods of the deployed enterprise beans with container-
managed transaction demarcation have been assigned a transaction attribute if this has not be specified
in the deployment descriptor.

8.6. Container Provider Responsibilities
This section defines the responsibilities of the Container Provider.

Every client method invocation on a session bean via the bean’s business interface (and/or home and
component interface), no-interface view, web service endpoint, and every invocation of a message
listener method on a message-driven bean is interposed by the container, and every connection to a
resource manager used by an enterprise bean is obtained via the container. This managed execution
environment allows the container to affect the enterprise bean’s transaction management.

This does not imply that the container must interpose on every resource manager access performed by
the enterprise bean. Typically, the container interposes only on the resource manager connection factory
(e.g. a JDBC data source) JNDI look up by registering the container-specific implementation of the
resource manager connection factory object. The resource manager connection factory object allows the
container to obtain the javax.transaction.xa.XAResource interface as described in the Jakarta
Transactions specification and pass it to the transaction manager. After the set up is done, the enterprise
bean communicates with the resource manager without going through the container.

8.6.1. Bean-Managed Transaction Demarcation

This subsection defines the container’s responsibilities for the transaction management of enterprise
beans with bean-managed transaction demarcation.

Bean-managed transaction demarcation can be used with session and message-driven beans.

8.5. Deployer’s Responsibilities

158 Jakarta® Enterprise Beans, Core Features Final

The container must manage client invocations to an enterprise bean instance with bean-managed
transaction demarcation as follows. When a client invokes a business method via one of the enterprise
bean’s client views, the container suspends any transaction that may be associated with the client
request. If there is a transaction associated with the instance (this would happen if a stateful session
bean instance started the transaction in some previous business method), the container associates the
method execution with this transaction. If there are interceptor methods associated with the bean
instances, these actions are taken before the interceptor methods are invoked.

The container must make the jakarta.transaction.UserTransaction interface available to the enterprise
bean’s business method, message listener method, interceptor method, or timeout callback method via
dependency injection into the enterprise bean class or interceptor class, through lookup via the
jakarta.ejb.EJBContext interface, and in the JNDI naming context under java:comp/UserTransaction.
When an instance uses the jakarta.transaction.UserTransaction interface to demarcate a transaction,
the container must enlist all the resource managers used by the instance between the begin and
commit—or rollback—methods with the transaction.[49] When the instance attempts to commit the
transaction, the container is responsible for the global coordination of the transaction commit.[50]

In the case of a stateful session bean, it is possible that the business method or interceptor method that
started a transaction completes without committing or rolling back the transaction. In such a case, the
container must retain the association between the transaction and the instance across multiple client
calls until the instance commits or rolls back the transaction. When the client invokes the next
business method, the container must invoke the business method (and any applicable interceptor
methods for the bean) in this transaction context.

If a stateless or singleton session bean instance starts a transaction in a business method or interceptor
method, it must commit the transaction before the business method (or all its interceptor methods)
returns. The container must detect the case in which a transaction was started, but not completed, in
the business method or interceptor method for the business method, and handle it as follows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• If this a stateless session bean, discard the bean instance.[51]

• Throw the jakarta.ejb.EJBException.[52] If the Enterprise Beans 2.1 client view is used, the container
should throw thejava.rmi.RemoteException if the client is a remote client, and the
jakarta.ejb.EJBException if the client is a local client.

If a message-driven bean instance starts a transaction in a message listener method or interceptor
method, it must commit the transaction before the message listener method (or all its interceptor
methods) returns. The container must detect the case in which a transaction was started, but not
completed, in a message listener method or interceptor method for the message listener method, and
handle it as follows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

8.6. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 159

• Discard the instance of the message-driven bean.

If a session bean or message-driven bean instance starts a transaction in a timeout callback method, it
must commit the transaction before the timeout callback method returns. The container must detect
the case in which a transaction was started, but not completed, in a timeout callback method, and
handle it as follows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• If this is a stateless session bean or message-driven bean, discard the instance of the bean.

The actions performed by the container for an instance with bean-managed transaction are
summarized by the following table. T1 is a transaction associated with a client request, T2 is a
transaction that is currently associated with the instance (i.e. a transaction that was started but not
completed by a previous business method).

Table 5. Container’s Actions for Methods of Beans with Bean-Managed Transaction

Client’s transaction Transaction currently
associated with instance

Transaction associated with
the method

none none none

T1 none none

none T2 T2

T1 T2 T2

The following items describe each entry in the table:

• If the client request is not associated with a transaction and the instance is not associated with a
transaction, or if the bean is a message-driven bean, the container invokes the instance with an
unspecified transaction context.

• If the client request is associated with a transaction T1, and the instance is not associated with a
transaction, the container suspends the client’s transaction association and invokes the method
with an unspecified transaction context. The container resumes the client’s transaction association
(T1) when the method (together with any associated interceptor methods) completes. This case can
never happen for a message-driven bean or for the invocation of a web service endpoint method of
a session bean.

• If the client request is not associated with a transaction and the instance is already associated with
a transaction T2, the container invokes the instance with the transaction that is associated with the
instance (T2). This case can never happen for a stateless session bean, singleton session bean, or a
message-driven bean: it can only happen for a stateful session bean.

• If the client is associated with a transaction T1, and the instance is already associated with a
transaction T2, the container suspends the client’s transaction association and invokes the method
with the transaction context that is associated with the instance (T2). The container resumes the

8.6. Container Provider Responsibilities

160 Jakarta® Enterprise Beans, Core Features Final

client’s transaction association (T1) when the method (together with any associated interceptor
methods) completes. This case can never happen for a stateless session bean, singleton session
bean, or a message-driven bean: it can only happen for a stateful session bean.

The container must allow the enterprise bean instance to serially perform several transactions in a
method.

When an instance attempts to start a transaction using the begin method of the
jakarta.transaction.UserTransaction interface while the instance has not committed the previous
transaction, the container must throw the jakarta.transaction.NotSupportedException in the begin
method.

The container must throw the java.lang.IllegalStateException if an instance of a bean with bean-
managed transaction demarcation attempts to invoke the setRollbackOnly or getRollbackOnly method
of the jakarta.ejb.EJBContext interface.

8.6.2. Container-Managed Transaction Demarcation for Session Beans

The container is responsible for providing the transaction demarcation for the session beans declared
with container-managed transaction demarcation. For these enterprise beans, the container must
demarcate transactions as specified by the transaction attribute values specified using metadata
annotations in the bean class or specified in the deployment descriptor.

8.6.2.1. Session Synchronization Callbacks

If a session bean class implements the jakarta.ejb.SessionSynchronization interface or uses the session
synchronization annotations, the container must invoke the afterBegin, beforeCompletion, and
afterCompletion callbacks on the instance as part of the transaction commit protocol. If a stateful
session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback interceptor
methods are invoked in the scope of a transaction, session synchronization callbacks for such
transactions are not called on the bean instance.

The container invokes the afterBegin method on an instance before it invokes the first business
method in a transaction.

The container invokes the beforeCompletion method to give the enterprise bean instance the last
chance to cause the transaction to rollback. The instance may cause the transaction to roll back by
invoking the EJBContext.setRollbackOnly method.

The container invokes the afterCompletion(boolean committed) method after the completion of the
transaction commit protocol to notify the enterprise bean instance of the transaction outcome.

8.6.3. Container-Managed Transaction Demarcation for Business Methods

The following subsections define the responsibilities of the container for managing the invocation of
an enterprise bean business method when the method is invoked via the enterprise bean’s business

8.6. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 161

interface (and/or home or component interface), no-interface view, or web service endpoint. The
container’s responsibilities depend on the value of the transaction attribute.

8.6.3.1. NOT_SUPPORTED

The container invokes an enterprise bean method whose transaction attribute is set to the
NOT_SUPPORTED value with an unspecified transaction context.

If a client calls with a transaction context, the container suspends the association of the transaction
context with the current thread before invoking the enterprise bean’s business method. The container
resumes the suspended association when the business method has completed. The suspended
transaction context of the client is not passed to the resource managers or other enterprise bean
objects that are invoked from the business method.

If the business method invokes other enterprise beans, the container passes no transaction context
with the invocation.

Refer to Handling of Methods that Run with "an unspecified transaction context" for more details of
how the container can implement this case.

8.6.3.2. REQUIRED

The container must invoke an enterprise bean method whose transaction attribute is set to the
REQUIRED value with a valid transaction context.

If a client invokes the enterprise bean’s method while the client is associated with a transaction
context, the container invokes the enterprise bean’s method in the client’s transaction context, unless
the method is an asynchronous method. The client’s transaction context does not propagate with an
asynchronous method invocation. The semantics of the REQUIRED transaction attribute for an
asynchronous method are the same as REQUIRES_NEW.

If the client invokes the enterprise bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise bean business method. The container automatically enlists all the resource managers
accessed by the business method with the transaction. If the business method invokes other enterprise
beans, the container passes the transaction context with the invocation. The container attempts to
commit the transaction when the business method has completed. The container performs the commit
protocol before the method result is sent to the client.

8.6.3.3. SUPPORTS

The container invokes an enterprise bean method whose transaction attribute is set to SUPPORTS as
follows.

• If the client calls with a transaction context, the container performs the same steps as described in
the REQUIRED case.

• If the client calls without a transaction context, the container performs the same steps as described

8.6. Container Provider Responsibilities

162 Jakarta® Enterprise Beans, Core Features Final

in the NOT_SUPPORTED case.

The SUPPORTS transaction attribute must be used with caution. This is because of the different
transactional semantics provided by the two possible modes of execution. Only the enterprise beans that
will execute correctly in both modes should use the SUPPORTS transaction attribute.

8.6.3.4. REQUIRES_NEW

The container must invoke an enterprise bean method whose transaction attribute is set to
REQUIRES_NEW with a new transaction context.

If the client invokes the enterprise bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise bean business method. The container automatically enlists all the resource managers
accessed by the business method with the transaction. If the business method invokes other enterprise
beans, the container passes the transaction context with the invocation. The container attempts to
commit the transaction when the business method has completed. The container performs the commit
protocol before the method result is sent to the client.

If a client calls with a transaction context, the container suspends the association of the transaction
context with the current thread before starting the new transaction and invoking the business method.
The container resumes the suspended transaction association after the business method and the new
transaction have been completed.

8.6.3.5. MANDATORY

The container must invoke an enterprise bean method whose transaction attribute is set to MANDATORY
in a client’s transaction context. The client is required to call with a transaction context.

• If the client calls with a transaction context, the container performs the same steps as described in
the REQUIRED case.

• If the client calls without a transaction context, the container throws the
jakarta.ejb.EJBTransactionRequiredException.[53] If the Enterprise Beans 2.1 client view is used, the
container throws the jakarta.transaction.TransactionRequiredException exception if the client is a
remote client, and the jakarta.ejb.TransactionRequiredLocalException if the client is a local client.

8.6.3.6. NEVER

The container invokes an enterprise bean method whose transaction attribute is set to NEVER without a
transaction context defined by the Enterprise Beans specification. The client is required to call without
a transaction context.

• If the client calls with a transaction context, the container throws the jakarta.ejb.EJBException.[54] If
the Enterprise Beans 2.1 client view is used, the container throws the java.rmi.RemoteException
exception if the client is a remote client, and the jakarta.ejb.EJBException if the client is a local
client.

8.6. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 163

• If the client calls without a transaction context, the container performs the same steps as described
in the NOT_SUPPORTED case.

8.6.3.7. Transaction Attribute Summary

The following table provides a summary of the transaction context that the container passes to the
business method and resource managers used by the business method, as a function of the transaction
attribute and the client’s transaction context. T1 is a transaction passed with the client request, while
T2 is a transaction initiated by the container.

Table 6. Transaction Attribute Summary

Transaction attribute Client’s transaction Transaction associated
with business method

Transaction associated
with resource
managers

NOT_SUPPORTED
none none none

T1 none none

REQUIRED

none T2 T2

T1 T1 Note A T1

SUPPORTS
none none none

T1 T1 T1

REQUIRES_NEW
none T2 T2

T1 T2 T2

MANDATORY

none error N/A

T1 T1 T1

NEVER

none none none

T1 error N/A

Notes:
[A] T2 if the method is an asynchronous method.

If the enterprise bean’s business method invokes other enterprise beans via their business interfaces
or home and component interfaces, the transaction indicated in the column "Transaction associated
with business method" will be passed as part of the client context to the target enterprise bean.

See Handling of Methods that Run with "an unspecified transaction context" for how the container
handles the "none" case in Transaction Attribute Summary.

8.6. Container Provider Responsibilities

164 Jakarta® Enterprise Beans, Core Features Final

8.6.3.8. Handling of setRollbackOnly Method

The container must handle the EJBContext.setRollbackOnly method invoked from a business method
executing with the REQUIRED, REQUIRES_NEW, or MANDATORY transaction attribute as follows:

• The container must ensure that the transaction will never commit. Typically, the container
instructs the transaction manager to mark the transaction for rollback.

• If the container initiated the transaction immediately before dispatching the business method to
the instance (as opposed to the transaction being inherited from the caller), the container must
note that the instance has invoked the setRollbackOnly method. When the business method
invocation completes, the container must roll back rather than commit the transaction. If the
business method has returned normally or with an application exception, the container must pass
the method result or the application exception to the client after the container performed the
rollback.

• The container must throw the java.lang.IllegalStateException if the EJBContext.setRollbackOnly
method is invoked from a business method executing with the SUPPORTS, NOT_SUPPORTED, or NEVER
transaction attribute.

8.6.3.9. Handling of getRollbackOnly Method

The container must handle the EJBContext.getRollbackOnly method invoked from a business method
executing with the REQUIRED, REQUIRES_NEW, or MANDATORY transaction attribute.

The container must throw the java.lang.IllegalStateException if the EJBContext.getRollbackOnly
method is invoked from a business method executing with the SUPPORTS, NOT_SUPPORTED, or NEVER
transaction attribute.

8.6.3.10. Handling of getUserTransaction Method

If an instance of an enterprise bean with container-managed transaction demarcation attempts to
invoke the getUserTransaction method of the EJBContext interface, the container must throw the
java.lang.IllegalStateException.

8.6.3.11. Timing of Return Value Marshalling with Regard to Transaction Boundaries

When demarcating a container-managed transaction for a business method invocation through a
remote view or web service view, the container must complete the commit protocol before marshalling
the return value.

8.6.4. Container-Managed Transaction Demarcation for Message-Driven Beans

The container is responsible for providing the transaction demarcation for the message-driven beans
that the Bean Provider declared as with container-managed transaction demarcation. For these
enterprise beans, the container must demarcate transactions as specified by annotations on the bean
class or in the deployment descriptor. (See Deployment Descriptor for more information about the
deployment descriptor.)

8.6. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 165

8.6.5. Container-Managed Transaction Demarcation for Message Listener
Methods

The following subsections define the responsibilities of the container for managing the invocation of a
message-driven bean’s message listener method. The container’s responsibilities depend on the value
of the transaction attribute.

Only the NOT_SUPPORTED and REQUIRED transaction attributes may be used for message-driven bean
message listener methods. The use of the other transaction attributes is not meaningful for message-
driven bean message listener methods because there is no pre-existing client transaction context
(REQUIRES_NEW, SUPPORTS) and no client to handle exceptions (MANDATORY, NEVER).

8.6.5.1. NOT_SUPPORTED

The container invokes a message-driven bean message listener method whose transaction attribute is
set to NOT_SUPPORTED with an unspecified transaction context.

If the message listener method invokes other enterprise beans, the container passes no transaction
context with the invocation.

8.6.5.2. REQUIRED

The container must invoke a message-driven bean message listener method whose transaction
attribute is set to REQUIRED with a valid transaction context. The resource managers accessed by the
message listener method within the transaction are enlisted with the transaction. If the message
listener method invokes other enterprise beans, the container passes the transaction context with the
invocation. The container attempts to commit the transaction when the message listener method has
completed.

Messaging systems may differ in quality of service with regard to reliability and transactionality of the
dequeuing of messages.

The requirement for Jakarta Messaging are as follows:

A transaction must be started before the dequeuing of the Jakarta Messaging message and, hence,
before the invocation of the message-driven bean’s onMessage method. The resource manager
associated with the arriving message is enlisted with the transaction as well as all the resource
managers accessed by the onMessage method within the transaction. If the onMessage method
invokes other enterprise beans, the container passes the transaction context with the invocation.
The transaction is committed when the onMessage method has completed. If the onMessage method
does not successfully complete or the transaction is rolled back, message redelivery semantics
apply.

8.6. Container Provider Responsibilities

166 Jakarta® Enterprise Beans, Core Features Final

8.6.5.3. Handling of setRollbackOnly Method

The container must handle the EJBContext.setRollbackOnly method invoked from a message listener
method executing with the REQUIRED transaction attribute as follows:

• The container must ensure that the transaction will never commit. Typically, the container
instructs the transaction manager to mark the transaction for rollback.

• The container must note that the instance has invoked the setRollbackOnly method. When the
method invocation completes, the container must roll back rather than commit the transaction.

The container must throw and log the java.lang.IllegalStateException if the
EJBContext.setRollbackOnly method is invoked from a message listener method executing with the
NotSupported transaction attribute

8.6.5.4. Handling of getRollbackOnly Method

The container must handle the EJBContext.getRollbackOnly() method invoked from a message listener
method executing with the REQUIRED transaction attribute.

The container must throw and log the java.lang.IllegalStateException if the
EJBContext.getRollbackOnly method is invoked from a message listener method executing with the
NOT_SUPPORTED transaction attribute.

8.6.5.5. Handling of getUserTransaction Method

If an instance of a message-driven bean with container-managed transaction demarcation attempts to
invoke the getUserTransaction method of the EJBContext interface, the container must throw and log
the java.lang.IllegalStateException.

8.6.6. Local Transaction Optimization

The container may use a local transaction optimization for enterprise beans whose metadata
annotations or deployment descriptor indicates that connections to a resource manager are shareable
(see Declaration of Resource Manager Connection Factory References in Deployment Descriptor). The
container manages the use of the local transaction optimization transparently to the application.

The container may use the optimization for transactions initiated by the container for a bean with
container-managed transaction demarcation and for transactions initiated by a bean with bean-
managed transaction demarcation with the UserTransaction interface. The container cannot apply the
optimization for transactions imported from a different container.

The use of local transaction optimization approach is discussed in [18] and [16].

8.6.7. Handling of Methods that Run with "an unspecified transaction context"

The term "an unspecified transaction context" is used in the Enterprise Beans specification to refer to
the cases in which the Enterprise Beans architecture does not fully define the transaction semantics of

8.6. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 167

an enterprise bean method execution.

This includes the following cases:

• The execution of a method of an enterprise bean with container-managed transaction demarcation
for which the value of the transaction attribute is NOT_SUPPORTED, NEVER, or SUPPORTS.

• The execution of a PostConstruct or PreDestroy callback method of a stateless session bean with
container-managed transaction demarcation.[55]

• The execution of a PostConstruct or PreDestroy callback method of a message-driven bean with
container-managed transaction demarcation.[56]

The Enterprise Beans specification does not prescribe how the container should manage the execution
of a method with an unspecified transaction context—the transaction semantics are left to the
container implementation. Some techniques for how the container may choose to implement the
execution of a method with an unspecified transaction context are as follows (the list is not inclusive of
all possible strategies):

• The container may execute the method and access the underlying resource managers without a
transaction context.

• The container may treat each call of an instance to a resource manager as a single transaction (e.g.
the container may set the auto-commit option on a JDBC connection).

• The container may merge multiple calls of an instance to a resource manager into a single
transaction.

• The container may merge multiple calls of an instance to multiple resource managers into a single
transaction.

• If an instance invokes methods on other enterprise beans, and the invoked methods are also
designated to run with an unspecified transaction context, the container may merge the resource
manager calls from the multiple instances into a single transaction.

• Any combination of the above.

Since the enterprise bean does not know which technique the container implements, the enterprise
bean must be written conservatively not to rely on any particular container behavior.

A failure that occurs in the middle of the execution of a method that runs with an unspecified
transaction context may leave the resource managers accessed from the method in an unpredictable
state. The Enterprise Beans architecture does not define how the application should recover the
resource managers’ state after such a failure.

8.7. Access from Multiple Clients in the Same
Transaction Context
This section describes a more complex distributed transaction scenario, and specifies the container’s

8.7. Access from Multiple Clients in the Same Transaction Context

168 Jakarta® Enterprise Beans, Core Features Final

behavior required for this scenario.

8.7.1. Transaction "Diamond" Scenario with an Entity Object

An entity object [57] may be accessed by multiple clients in the same transaction. For example, program
A may start a transaction, call program B and program C in the transaction context, and then commit
the transaction. If programs B and C access the same entity object, the topology of the transaction
creates a diamond.

Program A

TX 1 Program B

TX 1 Program C

Enterprise Bean Container

Entity object

TX 1

TX 1

Figure 16. Transaction Diamond Scenario with Entity Object

An example (not realistic in practice) is a client program that tries to perform two purchases at two
different stores within the same transaction. At each store, the program that is processing the client’s
purchase request debits the client’s bank account.

It is difficult to implement an Enterprise Beans server that handles the case in which programs B and C
access an entity object through different network paths. This case is challenging because many
Enterprise Beans servers implement the Enterprise Beans container as a collection of multiple
processes, running on the same or multiple machines. Each client is typically connected to a single
process. If clients B and C connect to different Enterprise Beans container processes, and both B and C
need to access the same entity object in the same transaction, the issue is how the container can make
it possible for B and C to see a consistent state of the entity object within the same transaction.[58]

The above example illustrates a simple diamond. We use the term diamond to refer to any distributed
transaction scenario in which an entity object is accessed in the same transaction through multiple
network paths.

Note that in the diamond scenario the clients B and C access the entity object serially. Concurrent
access to an entity object in the same transaction context would be considered an application
programming error, and it would be handled in a container-specific way.

8.7. Access from Multiple Clients in the Same Transaction Context

Final Jakarta® Enterprise Beans, Core Features 169

Note that the issue of handling diamonds is not unique to the Enterprise Beans architecture. This issue
exists in all distributed transaction processing systems.

The following subsections define the responsibilities of the Enterprise Beans Roles when handling
distributed transaction topologies that may lead to a diamond involving an entity object.

8.7.2. Container Provider’s Responsibilities

This subsection specifies the Enterprise Beans container’s responsibilities with respect to the diamond
case involving an entity object.[57]

The Enterprise Beans specification requires that the container provide support for local diamonds. In a
local diamond, components A, B, C, and D are deployed in the same Enterprise Beans container.

The Enterprise Beans specification does not require an Enterprise Beans container to support
distributed diamonds. In a distributed diamond, a target entity object is accessed from multiple clients
in the same transaction through multiple network paths, and the clients (programs B and C) are not
enterprise beans deployed in the same Enterprise Beans container as the target entity object.

If the Container Provider chooses not to support distributed diamonds, and if the container can detect
that a client invocation would lead to a diamond, the container should throw the
jakarta.ejb.EJBException (or java.rmi.RemoteException if the Enterprise Beans 2.1 remote client view is
used).

8.7.3. Bean Provider’s Responsibilities

This subsection specifies the Bean Provider’s responsibilities with respect to the diamond case
involving an entity object.[57]

The diamond case is transparent to the Bean Provider—the Bean Provider does not have to code the
enterprise bean differently for the bean to participate in a diamond. Any solution to the diamond
problem implemented by the container is transparent to the bean and does not change the semantics
of the bean.

8.7.4. Application Assembler and Deployer’s Responsibilities

This subsection specifies the Application Assembler and Deployer’s responsibilities with respect to the
diamond case involving an entity object.[57]

The Application Assembler and Deployer should be aware that distributed diamonds might occur. In
general, the Application Assembler should try to avoid creating unnecessary distributed diamonds.

If a distributed diamond is necessary, the Deployer should advise the container (using a container-
specific API) that an entity objects of the entity bean may be involved in distributed diamond
scenarios.

8.7. Access from Multiple Clients in the Same Transaction Context

170 Jakarta® Enterprise Beans, Core Features Final

8.7.5. Transaction Diamonds involving Session Objects

While it is illegal for two clients to access the same session object, it is possible for applications that use
session beans to encounter the diamond case. For example, program A starts a transaction and then
invokes two different session objects.

Enterprise Bean Container

Program A

TX 1 Session instance 1

read and cache
Account 100

TX 1 Session instance 2
read and cache
Account 100

Figure 17. Transaction Diamond Scenario with a Session Bean

If the session bean instances cache the same data item (e.g. the current balance of Account 100) across
method invocations in the same transaction, most likely the program is going to produce incorrect
results.

The problem may exist regardless of whether the two session objects are the same or different session
beans. The problem may exist (and may be harder to discover) if there are intermediate objects
between the transaction initiator and the session objects that cache the data.

There are no requirements for the Container Provider because it is impossible for the container to
detect this problem.

The Bean Provider and Application Assembler must avoid creating applications that would result in
inconsistent caching of data in the same transaction by multiple session objects.

[41] Note that environment entries other than resources are specified with the Resource annotation and/or resource-ref
deployment descriptor element as well.
[42] In this chapter we use the TransactionAttribute annotation values to refer to transaction attributes. The deployment
descriptor may be used as an overriding mechanism or an alternative to the use of annotations.
[43] The use of the term "container" here encompasses both the container and the messaging provider. When the
contracts outlined in [16] are used, it may be the messaging provider that starts the transaction.
[44] This restriction may be removed in a future release of this specification.
[45] However, use of Jakarta Persistence EntityTransaction interface is supported. See [3] for a discussion of resources
used in Jakarta Persistence that may be "unaware" of the presence of Jakarta Transactions, and a description of the
EntityTransaction interface and its use.

8.7. Access from Multiple Clients in the Same Transaction Context

Final Jakarta® Enterprise Beans, Core Features 171

[46] Note that the Bean Provider must use the pre-passivate callback method here to close the connections and set the
instance variables for the connection to null.
[47] REQUIRED is the default transaction attribute value for container managed transaction demarcation. The explicit
specification of the transaction attribute is therefore not required in this example.
[48] If a stateful session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback interceptor
methods are invoked in the scope of a transaction, SessionSynchronization callbacks for such transactions are not called
on the bean instance.
[49] However, use of Jakarta Persistence EntityTransaction interface is supported. See [3] for a discussion of resources
used in Jakarta Persistence that may be "unaware" of the presence of Jakarta Transactions, and a description of the
EntityTransaction interface and its use.
[50] The container typically relies on a transaction manager that is part of the Enterprise Beans server to perform the
two-phase commit across all the enlisted resource managers. If only a single resource manager is involved in the
transaction and the deployment descriptor indicates that connection sharing may be used, the container may use the
local transaction optimization. See [18] and [16] for further discussion.
[51] Note that if the bean is a singleton session bean, the instance must not be discarded unless the exception occurred
in an AroundConstruct, PostConstruct or PreDestroy lifecycle interceptor method.
[52] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
thrown to the client instead.
[53] If the business interface is a remote business interface that extends java.rmi.Remote, the
jakarta.transaction.TransactionRequiredException is thrown to the client instead.
[54] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
thrown to the client instead.
[55] See Session Bean Component Contract.
[56] See Message-Driven Bean Component Contract.
[57] Component contract and client view of entity beans are described in the Enterprise Beans Optional Features
document [2].
[58] This diamond problem applies only to the case when B and C are in the same transaction.

8.7. Access from Multiple Clients in the Same Transaction Context

172 Jakarta® Enterprise Beans, Core Features Final

Chapter 9. Exception Handling

9.1. Overview and Concepts

9.1.1. Application Exceptions

An application exception is an exception defined by the Bean Provider as part of the business logic of
an application. Application exceptions are distinguished from system exceptions in this specification.

Enterprise bean business methods use application exceptions to inform the client of abnormal
application-level conditions, such as unacceptable values of the input arguments to a business method.
A client can typically recover from an application exception. Application exceptions are not intended
for reporting system-level problems.

For example, the Account enterprise bean may throw an application exception to report that a debit
operation cannot be performed because of an insufficient balance. The Account bean should not use an
application exception to report, for example, the failure to obtain a database connection.

An application exception may be defined in the throws clause of a method of an enterprise bean’s
business interface, no-interface view, home interface, component interface, or web service endpoint,
or of a message listener method.

An application exception class can either be a subclass (direct or indirect) of java.lang.Exception (i.e., a
"checked exception"), or a subclass of the java.lang.RuntimeException (an "unchecked exception"). An
application exception may not be a subclass of the java.rmi.RemoteException. The
java.rmi.RemoteException and its subclasses are reserved for system exceptions.

The jakarta.ejb.CreateException and jakarta.ejb.RemoveException and subclasses thereof are
considered to be application exceptions. These exceptions are used as standard application exceptions
to report errors to the client from the create and remove methods of the EJBHome and/or
EJBLocalHome interfaces of components written to the Enterprise Beans 2.1 client view. These
exceptions are covered by the rules on application exceptions that are defined in this chapter.

9.1.2. Goals for Exception Handling

The Enterprise Beans specification for exception handling is designed to meet these high-level goals:

• An application exception thrown by an enterprise bean instance should be reported to the client
precisely (i.e., the client gets the same exception).[59]

• An application exception thrown by an enterprise bean instance should not automatically cause a
client’s transaction to be marked for rollback unless the application exception was defined to cause
transaction rollback. The client should typically be given a chance to recover from an application
exception.

• An unexpected exception that may have left the instance’s state variables and/or underlying

9.1. Overview and Concepts

Final Jakarta® Enterprise Beans, Core Features 173

persistent data in an inconsistent state can be handled safely.

9.2. Bean Provider’s Responsibilities
This section describes the view and responsibilities of the Bean Provider with respect to exception
handling.

9.2.1. Application Exceptions

The Bean Provider defines application exceptions. Application exception that is a checked exception is
defined as such by being listed in the throws clause of a method on the bean’s business interface, no-
interface view, home interface, component interface, or web service endpoint. An application
exception that is an unchecked exception is defined as an application exception by annotating it with
the ApplicationException metadata annotation, or denoting it in the deployment descriptor with the
application-exception element.

Because application exceptions are intended to be handled by the client, and not by the System
Administrator, they should be used only for reporting business logic exceptions, not for reporting
system level problems.

Certain messaging types may define application exceptions in their message listener interfaces. The
resource adapter in use for the particular messaging type determines how the exception is
processed. See [16].

The Bean Provider is responsible for throwing the appropriate application exception from the business
method to report a business logic exception to the client.

An application exception does not automatically result in marking the transaction for rollback unless
the ApplicationException annotation is applied to the exception class and is specified with the rollback
element value true or the application-exception deployment descriptor element for the exception
specifies the rollback element as true.[60] The rollback subelement of the application-exception
deployment descriptor element may be explicitly specified to override the rollback value specified or
defaulted by the ApplicationException annotation.

The Bean Provider must do one of the following to ensure data integrity before throwing an
application exception from an enterprise bean instance:

• Ensure that the instance is in a state such that a client’s attempt to continue and/or commit the
transaction does not result in loss of data integrity. For example, the instance throws an application
exception indicating that the value of an input parameter was invalid before the instance
performed any database updates.

• If the application exception is not specified to cause transaction rollback, mark the transaction for
rollback using the EJBContext.setRollbackOnly method before throwing the application exception.
Marking the transaction for rollback will ensure that the transaction can never commit.

9.2. Bean Provider’s Responsibilities

174 Jakarta® Enterprise Beans, Core Features Final

The Bean Provider is also responsible for using the standard Enterprise Beans application exceptions
(jakarta.ejb.CreateException, jakarta.ejb.RemoveException, jakarta.ejb.FinderException, and
subclasses thereof) for beans written to the Enterprise Beans 2.1 and earlier client view as described in
Standard Application Exceptions for Entities in Container-Managed Persistence and Standard
Application Exceptions for Entities in Bean-Managed Persistence.

Bean Providers may define subclasses of the standard Enterprise Beans application exceptions and
throw instances of the subclasses in the enterprise bean methods. A subclass will typically provide
more information to the client that catches the exception.

By default, designating an unchecked exception as an application exception also applies to subclasses
of that exception. This inheritance behavior can be disabled by setting the inherited element of the
ApplicationException annotation to false or by setting the inherited element of the application-
exception deployment descriptor element to false.

Example:

@ApplicationException(rollback=true)
public class ExceptionA extends RuntimeException { ... }

public class ExceptionB extends ExceptionA { ... }

@ApplicationException(inherited=false, rollback=false)
public class ExceptionC extends ExceptionB { ... }

public class ExceptionD extends ExceptionC { ... }

ExceptionA is an application exception that causes the transaction to be marked for rollback.

ExceptionB is an application exception that causes the transaction to be marked for rollback.

ExceptionC is an application exception that does not cause the transaction to be marked for rollback.

ExceptionD is not an application exception.

9.2.2. System Exceptions

A system exception is an exception that is a java.rmi.RemoteException (or one of its subclasses) or a
RuntimeException that is not an application exception.

This subsection describes how the Bean Provider should handle various system-level exceptions and
errors that an enterprise bean instance may encounter during the execution of a session bean business
method, a message-driven bean message listener method, an interceptor method, or a callback method
(e.g. ejbLoad).

An enterprise bean business method, message listener method, business method interceptor method,

9.2. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 175

./enterprise-beans-spec-opt-4.0.pdf#a1524
./enterprise-beans-spec-opt-4.0.pdf#a2806
./enterprise-beans-spec-opt-4.0.pdf#a2806

or lifecycle callback interceptor method may encounter various exceptions or errors that prevent the
method from successfully completing. Typically, this happens because the exception or error is
unexpected, or the exception is expected but the Bean Provider does not know how to recover from it.
Examples of such exceptions and errors are: failure to obtain a database connection, JNDI exceptions,
unexpected RemoteException from invocation of other enterprise beans,[61] unexpected
RuntimeException, JVM errors, and so on.

If the enterprise bean method encounters a system-level exception or error that does not allow the
method to successfully complete, the method should throw a suitable non-application exception that is
compatible with the method’s throws clause. While the Enterprise Beans specification does not
prescribe the exact usage of the exception, it encourages the Bean Provider to follow these guidelines:

• If the bean method encounters a system exception or error, it should simply propagate the error
from the bean method to the container (i.e., the bean method does not have to catch the exception).

• If the bean method performs an operation that results in a checked exception [62] that the bean
method cannot recover, the bean method should throw the jakarta.ejb.EJBException that wraps
the original exception.

• Any other unexpected error conditions should be reported using the jakarta.ejb.EJBException.

Note that the jakarta.ejb.EJBException is a subclass of the java.lang.RuntimeException, and therefore it
does not have to be listed in the throws clauses of the business methods.

The container catches a non-application exception; logs it (which can result in alerting the System
Administrator); and, unless the bean is a message-driven bean, throws the jakarta.ejb.EJBException [63]

or, if the web service client view is used, the java.rmi.RemoteException. If the Enterprise Beans 2.1
client view is used, the container throws the java.rmi.RemoteException (or subclass thereof) to the
client if the client is a remote client, or throws the jakarta.ejb.EJBException (or subclass thereof) to the
client if the client is a local client. In the case of a message-driven bean, the container logs the
exception and then throws a jakarta.ejb.EJBException that wraps the original exception to the
resource adapter. (See [16]).

The exception that is seen by the client is described in Container Provider Responsibilities. It is
determined both by the exception that is thrown by the container and/or bean and the client view.

The Bean Provider can rely on the container to perform the following tasks when catching a non-
application exception:

• The transaction in which the bean method participated will be rolled back.

• Unless the bean is a singleton session bean, no other method will be invoked on an instance that
threw a non-application exception.

This means that unless the bean is a singleton session bean, the Bean Provider does not have to perform
any cleanup actions before throwing a non-application exception. It is the container that is responsible
for the cleanup.

9.2. Bean Provider’s Responsibilities

176 Jakarta® Enterprise Beans, Core Features Final

9.3. Container Provider Responsibilities
This section describes the responsibilities of the Container Provider for handling exceptions. The
Enterprise Beans architecture specifies the container’s behavior for the following exceptions:

• Exceptions from the business methods of session beans, including session bean business method
interceptor methods.

• Exceptions from message-driven bean message listener methods and business method interceptor
methods.

• Exceptions from timeout callback methods.

• Exceptions from other container-invoked callbacks on the enterprise bean.

• Exceptions from management of container-managed transaction demarcation.

9.3.1. Exceptions from a Session Bean’s Business Interface Methods and No-
Interface View Methods

Handling of Exceptions Thrown by a Business Interface Method or No-interface View Method of a Bean
with Container-Managed Transaction Demarcation specifies how the container must handle the
exceptions thrown by the methods of the business interface and no-interface view for beans with
container-managed transaction demarcation, including the exceptions thrown by business method
interceptor methods. The table specifies the container’s action as a function of the condition under
which the business method executes and the exception thrown by the method. The table also
illustrates the exception that the client will receive and how the client can recover from the exception.
(Client’s View of Exceptions describes the client’s view of exceptions in detail.) The notation
"AppException" denotes an application exception.

Table 7. Handling of Exceptions Thrown by a Business Interface Method or No-interface View Method of a Bean
with Container-Managed Transaction Demarcation

9.3. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 177

Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction Note A.
This case may happen
with Required, Mandatory,
and Supports attributes.

AppException Re-throw AppException.

Mark the transaction for
rollback if the
application exception is
specified as causing
rollback.

Receives AppException.

Can attempt to continue
computation in the
transaction, and
eventually commit the
transaction unless the
application exception is
specified as causing
rollback (the commit
would also fail if the
instance called
setRollbackOnly).

all other exceptions and
errors

Log the exception or
error Note B.

Mark the transaction for
rollback.

Discard instance Note C.

Throw
jakarta.ejb.EJBTransact

ionRolledbackException

to client. Note D

Receives
jakarta.ejb.EJBTransact

ionRolledbackException

Continuing transaction
is fruitless.

9.3. Container Provider Responsibilities

178 Jakarta® Enterprise Beans, Core Features Final

Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of a transaction
that the container
started immediately
before dispatching the
business method.
This case may happen
with Required and
RequiresNew attributes.

AppException If the instance called
setRollbackOnly(), then
rollback the transaction,
and re-throw
AppException.

If the application
exception is specified as
causing rollback, then
rollback the transaction
and then re-throw
AppException.

Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.

If the client executes in
a transaction, the
client’s transaction is
not marked for rollback,
and client can continue
its work.

all other exceptions Log the exception or
error.

Rollback the container-
started transaction.

Discard instance.

Throw EJBException to
client. Note E

Receives EJBException.

If the client executes in
a transaction, the
client’s transaction may
or may not be marked
for rollback.

9.3. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 179

Method condition Method exception Container’s action Client’s view

Bean method runs with
an unspecified
transaction context.
This case may happen
with the NotSupported,
Never, and Supports
attributes.

AppException Re-throw AppException. Receives AppException.

If the client executes in
a transaction, the
client’s transaction is
not marked for rollback,
and client can continue
its work.

all other exceptions Log the exception or
error.

Discard instance.

Throw EJBException to
client. Note F

Receives EJBException.

If the client executes in
a transaction, the
client’s transaction may
or may not be marked
for rollback.

Notes:
[A] The caller can be another enterprise bean or an arbitrary client program.
[B] Log the exception or error means that the container logs the exception or error so that the System
Administrator is alerted of the problem.
[C] Discard instance means that the container must not invoke any business methods or container
callbacks on the instance. Discarding does not apply if the bean is a singleton session bean.
[D] If the business interface is a remote business interface that extends java.rmi.Remote, the
jakarta.transaction.TransactionRolledbackException is thrown to the client, which will receive this
exception.
[E] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.RemoteException is thrown to the client, which will receive this exception.
[F] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.RemoteException is thrown to the client, which will receive this exception.

Handling of Exceptions Thrown by a Business Interface Method or No-Interface View Method of a
Session Bean with Bean-Managed Transaction Demarcation specifies how the container must handle
the exceptions thrown by the methods of the business interface or no-interface view for beans with
bean-managed transaction demarcation, including the exceptions thrown by business method
interceptor methods. The table specifies the container’s action as a function of the condition under
which the business interface method executes and the exception thrown by the method. The table also
illustrates the exception that the client will receive and how the client can recover from the exception.
(Client’s View of Exceptions describes the client’s view of exceptions in detail.)

Table 8. Handling of Exceptions Thrown by a Business Interface Method or No-Interface View Method of a
Session Bean with Bean-Managed Transaction Demarcation

9.3. Container Provider Responsibilities

180 Jakarta® Enterprise Beans, Core Features Final

Bean method condition Bean method
exception

Container action Client receives

Bean is a stateful,
stateless, or singleton
session bean.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.

Rollback a transaction
that has been started,
but not yet completed,
by the instance.

Discard instance. Note A

Throw EJBException to
client. Note B

Receives EJBException.

Notes:
[A] Discarding does not apply if the bean is a singleton session bean.
[B] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.RemoteException is thrown to the client, which will receive this exception.

9.3.2. Exceptions from Method Invoked via Session Bean’s 2.1 Client View or
through Web Service Client View

Business methods in this context are considered to be the methods defined in the enterprise bean’s
home interface, component interface, or web service endpoint (including superinterfaces of these);
and the following session bean methods: ejbCreate<METHOD>, ejbRemove, and ejbHome<METHOD> methods.

Handling of Exceptions Thrown by Methods of Web Service Client View or Enterprise Beans 2.1 Client
View of a Bean with Container-Managed Transaction Demarcation specifies how the container must
handle the exceptions thrown by the business methods for beans with container-managed transaction
demarcation, including the exceptions thrown by business method interceptor methods. The table
specifies the container’s action as a function of the condition under which the business method
executes and the exception thrown by the business method. The table also illustrates the exception that
the client will receive and how the client can recover from the exception. (Client’s View of Exceptions
describes the client’s view of exceptions in detail.) The notation "AppException" denotes an application
exception.

Table 9. Handling of Exceptions Thrown by Methods of Web Service Client View or Enterprise Beans 2.1 Client
View of a Bean with Container-Managed Transaction Demarcation

9.3. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 181

Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction Note A.
This case may happen
with Required, Mandatory,
and Supports attributes.

AppException Re-throw AppException

Mark the transaction for
rollback if the
application exception is
specified as causing
rollback.

Receives AppException.

Can attempt to continue
computation in the
transaction, and
eventually commit the
transaction unless the
application exception is
specified as causing
rollback (the commit
would also fail if the
instance called
setRollbackOnly).

all other exceptions and
errors

Log the exception or
error Note B.

Mark the transaction for
rollback.

Discard instance Note C.

Throw
jakarta.transaction.Tra
nsactionRolledbackExcep

tion to remote client;
throw
jakarta.ejb.Transaction
RolledbackLocalExceptio

n to local client.

Receives
jakarta.transaction.Tra
nsactionRolledbackExcep

tion or
jakarta.ejb.Transaction
RolledbackLocalExceptio

n

Continuing transaction
is fruitless.

9.3. Container Provider Responsibilities

182 Jakarta® Enterprise Beans, Core Features Final

Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of a transaction
that the container
started immediately
before dispatching the
business method.
This case may happen
with Required and
RequiresNew attributes.

AppException If the instance called
setRollbackOnly(), then
rollback the transaction,
and re-throw
AppException.

If the application
exception is specified as
causing rollback, then
rollback the transaction
and then re-throw
AppException.

Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.

If the client executes in
a transaction, the
client’s transaction is
not marked for rollback,
and client can continue
its work.

all other exceptions Log the exception or
error.

Rollback the container-
started transaction.

Discard instance.

Throw RemoteException
to remote or web
service client Note D;
throw EJBException to
local client.

Receives
RemoteException or
EJBException.

If the client executes in
a transaction, the
client’s transaction may
or may not be marked
for rollback.

9.3. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 183

Method condition Method exception Container’s action Client’s view

Bean method runs with
an unspecified
transaction context.
This case may happen
with the NotSupported,
Never, and Supports
attributes.

AppException Re-throw AppException. Receives AppException.

If the client executes in
a transaction, the
client’s transaction is
not marked for rollback,
and client can continue
its work.

all other exceptions Log the exception or
error.

Discard instance.

Throw RemoteException
to remote or web
service client; throw
EJBException to local
client.

Receives
RemoteException or
EJBException.

If the client executes in
a transaction, the
client’s transaction may
or may not be marked
for rollback.

Notes:
[A] The caller can be another enterprise bean or an arbitrary client program. This case is not
applicable for methods of the web service endpoint.
[B] Log the exception or error means that the container logs the exception or error so that the System
Administrator is alerted of the problem.
[C] Discard instance means that the container must not invoke any business methods or container
callbacks on the instance. Discarding does not apply if the bean is a singleton session bean.
[D] Throw RemoteException to web service client means that the container maps the RemoteException to
the appropriate SOAP fault. See [4].

Handling of Exceptions Thrown by a Enterprise Beans 2.1 Client View Business Method of a Session
Bean with Bean-Managed Transaction Demarcation specifies how the container must handle the
exceptions thrown by the business methods for beans with bean-managed transaction demarcation,
including the exceptions thrown by business method interceptor methods. The table specifies the
container’s action as a function of the condition under which the business method executes and the
exception thrown by the business method. The table also illustrates the exception that the client will
receive and how the client can recover from the exception. (Client’s View of Exceptions describes the
client’s view of exceptions in detail.)

Table 10. Handling of Exceptions Thrown by a Enterprise Beans 2.1 Client View Business Method of a Session
Bean with Bean-Managed Transaction Demarcation

9.3. Container Provider Responsibilities

184 Jakarta® Enterprise Beans, Core Features Final

Bean method condition Bean method
exception

Container action Client receives

Bean is a stateful,
stateless, or singleton
session bean.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.

Rollback a transaction
that has been started,
but not yet completed,
by the instance.

Discard instance. Note A

Throw RemoteException
to remote or web
service client Note B;
throw EJBException to
local client.

Receives
RemoteException or
EJBException.

Notes:
[A] Discarding does not apply if the bean is a singleton session bean.
[B] Throw RemoteException to web service client means that the container maps the RemoteException to
the appropriate SOAP fault. See [4].

9.3.3. Exceptions from AroundConstruct, PostConstruct and PreDestroy
Lifecycle Callbacks

Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateful, Stateless,
Singleton Session Bean or a Message-Driven Bean. specifies how the container must handle the
exceptions that escape interceptor chain for the AroundConstruct, PostConstruct and PreDestroy
methods for session and message-driven beans.

Table 11. Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateful, Stateless,
Singleton Session Bean or a Message-Driven Bean.

9.3. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 185

Bean method condition Bean method exception Container action

Bean is a stateful, stateless or
singleton session bean, or a
message-driven bean

system exceptions Log the exception or error.

If the bean is a singleton or
stateful session bean, rollback
any container-started
transaction.

Discard instance.

9.3.4. Exceptions from Message-Driven Bean Message Listener Methods

This section specifies the container’s handling of exceptions thrown from a message-driven bean’s
message listener method.

Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Container-Managed Transaction Demarcation. specifies how the container must handle the exceptions
thrown by a message listener method of a message-driven bean with container-managed transaction
demarcation, including the exceptions thrown by business method interceptor methods which
intercept the invocation of message listener methods. The table specifies the container’s action as a
function of the condition under which the method executes and the exception thrown by the method.

Table 12. Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Container-Managed Transaction Demarcation.

9.3. Container Provider Responsibilities

186 Jakarta® Enterprise Beans, Core Features Final

Method condition Method exception Container’s action

Bean method runs in the context
of a transaction that the
container started immediately
before dispatching the method.
This case happens with Required
attribute.

AppException Mark the transaction for rollback
if the application exception is
specified as causing rollback.

If the instance called
setRollbackOnly, rollback the
transaction and re-throw
AppException to resource
adapter.

Otherwise, attempt to commit
the transaction unless the
application exception is specified
as causing rollback and re-throw
AppException to resource
adapter.

system exceptions Log the exception or error. Note
A

Rollback the container-started
transaction.

Discard instance. Note B

Throw EJBException that wraps
the original exception to
resource adapter.

Bean method runs with an
unspecified transaction context.
This case happens with the
NotSupported attribute.

AppException Re-throw AppException to
resource adapter.

system exceptions Log the exception or error.

Discard instance.

Throw EJBException that wraps
the original exception to
resource adapter

Notes:
[A] Log the exception or error means that the container logs the exception or error so that the System
Administrator is alerted of the problem.
[B] Discard instance means that the container must not invoke any methods on the instance.

9.3. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 187

Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with Bean-
Managed Transaction Demarcation. specifies how the container must handle the exceptions thrown by
a message listener method of a message-driven bean with bean-managed transaction demarcation. The
table specifies the container’s action as a function of the condition under which the method executes
and the exception thrown by the method.

Table 13. Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with Bean-
Managed Transaction Demarcation.

Bean method condition Bean method exception Container action

Bean is a message-driven bean

AppException Re-throw AppException to
resource adapter.

system exceptions Log the exception or error.

Rollback a transaction that has
been started, but not yet
completed, by the instance.

Discard instance.

Throw EJBException that wraps
the original exception to
resource adapter.

9.3.5. Exceptions from an Enterprise Bean’s Timeout Callback Method

This section specifies the container’s handling of exceptions thrown from an enterprise bean’s timeout
callback method.

Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with Container-
Managed Transaction Demarcation. and Handling of Exceptions Thrown by a Timeout Callback
Method of an Enterprise Bean with Bean-Managed Transaction Demarcation. specify how the
container must handle the exceptions thrown by the timeout callback method of an enterprise bean.
The timeout callback method does not throw application exceptions and cannot throw exceptions to
the client.

Table 14. Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with Container-
Managed Transaction Demarcation.

9.3. Container Provider Responsibilities

188 Jakarta® Enterprise Beans, Core Features Final

Method condition Method exception Container’s action

Bean timeout callback method
runs in the context of a
transaction that the container
started immediately before
dispatching the method.

system exceptions Log the exception or error. Note
A

Rollback the container-started
transaction.

Discard instance. Note B

Notes:
[A] Log the exception or error means that the container logs the exception or error so that the System
Administrator is alerted of the problem.
[B] Discard instance means that the container must not invoke any methods on the instance. Discarding
does not apply if the bean is a singleton session bean.

Table 15. Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with Bean-
Managed Transaction Demarcation.

Method condition Method exception Container’s action

The bean timeout callback
method may make use of
UserTransaction.

system exceptions Log the exception or error. Note
A

Rollback a transaction that has
been started, but not yet
completed, by the instance.

Discard instance. Note B

Notes:
[A] Log the exception or error means that the container logs the exception or error so that the System
Administrator is alerted of the problem.
[B] Discard instance means that the container must not invoke any methods on the instance. Discarding
does not apply if the bean is a singleton session bean.

9.3.6. Exceptions from Other Container-invoked Callbacks

This subsection specifies the container’s handling of exceptions thrown from the other container-
invoked callbacks on the enterprise bean. This subsection applies to the following callback methods:

• Dependency injection methods.

• The PostActivate and PrePassivate callback methods, and/or ejbActivate, ejbPa`ssivate, and
setSessionContext methods of the SessionBean interface.

• The setMessageDrivenContext method of the MessageDrivenBean interface.

• The afterBegin, beforeCompletion and afterCompletion session synchroniziation methods.

9.3. Container Provider Responsibilities

Final Jakarta® Enterprise Beans, Core Features 189

The container must handle all exceptions or errors from these methods as follows:

• Log the exception or error to bring the problem to the attention of the System Administrator.

• If the instance is in a transaction, mark the transaction for rollback.

• Discard the instance (i.e., the container must not invoke any business methods or container
callbacks on the instance).

• If the exception or error happened during the processing of a client invoked method, throw the
jakarta.ejb.EJBException.[64] If the Enterprise Beans 2.1 client view or web service client view is
used, throw the java.rmi.RemoteException to the client if the client is a remote client or throw the
jakarta.ejb.EJBException to the client if the client is a local client. If the instance executed in the
client’s transaction, the container should throw the jakarta.ejb.EJBTransactionRolledbackException.
[65] If the Enterprise Beans 2.1 client view or web service client view is used, the container should
throw the jakarta.transaction.TransactionRolledbackException to a remote client or the
jakarta.ejb.TransactionRolledbackLocalException to a local client, because it provides more
information to the client. (The client knows that it is fruitless to continue the transaction.)

9.3.7. Non-existing Stateful Session Object

If a client makes a call to a stateful session object that has been removed, the container should throw
the jakarta.ejb.NoSuchEJBException.[66] If the Enterprise Beans 2.1 client view is used, the container
should throw the java.rmi.NoSuchObjectException (which is a subclass of java.rmi.RemoteException) to a
remote client, or the jakarta.ejb.NoSuchObjectLocalException to a local client.

9.3.8. Exceptions from the Management of Container-Managed Transactions

The container is responsible for starting and committing the container-managed transactions, as
described in Container-Managed Transaction Demarcation for Business Methods. This subsection
specifies how the container must deal with the exceptions that may be thrown by the transaction start
and commit operations.

If the container fails to start or commit a container-managed transaction, the container must throw the
jakarta.ejb.EJBException.[67] If the web service client view or Enterprise Beans 2.1 client view is used,
the container must throw the java.rmi.RemoteException to a remote or web service client and the
jakarta.ejb.EJBException to a local client. In the case where the container fails to start or commit a
container-managed transaction on behalf of a message-driven bean or a timeout callback method, the
container must throw and log the jakarta.ejb.EJBException.

However, the container should not throw the jakarta.ejb.EJBException or java.rmi.RemoteException if
the container performs a transaction rollback because the transaction has been marked for rollback
and no EJBException or RemoteException would otherwise be thrown according to Exceptions from a
Session Bean’s Business Interface Methods and No-Interface View Methods through Non-existing
Stateful Session Object. In this case, the container must rollback the transaction and pass the business
method result or the application exception thrown by the business method to the client.

9.3. Container Provider Responsibilities

190 Jakarta® Enterprise Beans, Core Features Final

Note that some implementations of the container may retry a failed transaction transparently to the
client and enterprise bean code. Such a container would throw the jakarta.ejb.EJBException or
java.rmi.RemoteException or after a number of unsuccessful tries.

9.3.9. Release of Resources

When the container discards an instance because of a system exception, the container should release
all the resources held by the instance that were acquired through the resource factories declared in the
enterprise bean environment (See Resource Manager Connection Factory References).

Note: While the container should release the connections to the resource managers that the instance
acquired through the resource factories declared in the enterprise bean environment, the container
cannot, in general, release "unmanaged" resources that the instance may have acquired through the JDK
APIs. For example, if the instance has opened a TCP/IP connection, most container implementations will
not be able to release the connection. The connection will be eventually released by the JVM garbage
collector mechanism.

9.3.10. Support for Deprecated Use of java.rmi.RemoteException

The Enterprise Beans 1.0 specification allowed the business methods, ejbCreate, ejbPostCreate,
ejbFind<METHOD>, ejbRemove, and the container-invoked callbacks (i.e., the methods defined in the
SessionBean and SessionSynchronization interfaces) implemented in the enterprise bean class to use the
java.rmi.RemoteException to report non-application exceptions to the container.

This use of the java.rmi.RemoteException was deprecated in Enterprise Beans 1.1—enterprise beans
written for the Enterprise Beans 1.1 specification should use the jakarta.ejb.EJBException instead, and
enterprise beans written for the Enterprise Beans 2.0 or later specification must use the
jakarta.ejb.EJBException instead.

The Enterprise Beans 1.1 and Enterprise Beans 2.0 or later specifications require that a container
support the deprecated use of the java.rmi.RemoteException. The container should treat the
java.rmi.RemoteException thrown by an enterprise bean method in the same way as it is specified for
the jakarta.ejb.EJBException.

9.4. Client’s View of Exceptions
This section describes the client’s view of exceptions received from an enterprise bean invocation.

A client accesses an enterprise bean either through the enterprise bean’s business interface (whether
local or remote), through the enterprise bean’s no-interface view, through the enterprise bean’s remote
home and remote component interfaces, through the enterprise bean’s local home and local
component interfaces, or through the enterprise bean’s web service client view depending on whether
the client is written to the Enterprise Beans 3.x API or earlier API and whether the client is a remote
client, a local client, or a web service client.

The methods of the business interface typically do not throw the java.rmi.RemoteException, regardless

9.4. Client’s View of Exceptions

Final Jakarta® Enterprise Beans, Core Features 191

of whether the interface is a remote or local interface.

The remote home interface and the remote component interface are Java RMI interfaces, and therefore
the throws clauses of all their methods (including those inherited from superinterfaces) include the
mandatory java.rmi.RemoteException. The throws clauses may include an arbitrary number of
application exceptions.

The local home and local component interfaces are both Java local interfaces, and the throws clauses of
all their methods (including those inherited from superinterfaces) must not include the
java.rmi.RemoteException. The throws clauses may include an arbitrary number of application
exceptions.

The no-interface view is a local view, and the throws clauses of all its methods must not include the
java.rmi.RemoteException. The throws clauses may include an arbitrary number of application
exceptions.

9.4.1. Application Exception

9.4.1.1. Local and Remote Clients

If a client program receives an application exception from an enterprise bean invocation, the client
can continue calling the enterprise bean. An application exception does not result in the removal of the
Enterprise Beans object.

Although the container does not automatically mark for rollback a transaction because of a thrown
application exception, the transaction might have been marked for rollback by the enterprise bean
instance before it threw the application exception or the application exception may have been
specified to require the container to rollback the transaction. There are two ways to learn if a
particular application exception results in transaction rollback or not:

• Statically. Programmers can check the documentation of the enterprise bean’s client view interface.
The Bean Provider may have specified (although he or she is not required to) the application
exceptions for which the enterprise bean marks the transaction for rollback before throwing the
exception.[68]

• Dynamically. Clients that are enterprise beans with container-managed transaction demarcation
can use the getRollbackOnly method of the jakarta.ejb.EJBContext object to learn if the current
transaction has been marked for rollback; other clients may use the getStatus method of the
jakarta.transaction.UserTransaction interface to obtain the transaction status.

9.4.1.2. Web Service Clients

If a stateless session bean throws an application exception from one of its web service methods, it is
the responsibility of the container to map the exception to the SOAP fault specified in the WSDL that
describes the port type that the stateless session bean implements. For Java clients, the exceptions
received by the client are described by the mapping rules in [4].

9.4. Client’s View of Exceptions

192 Jakarta® Enterprise Beans, Core Features Final

9.4.2. java.rmi.RemoteException and jakarta.ejb.EJBException

As described above, a client receives the jakarta.ejb.EJBException or the java.rmi.RemoteException as
an indication of a failure to invoke an enterprise bean method or to properly complete its invocation.
The exception can be thrown by the container or by the communication subsystem between the client
and the container.

If the client receives the jakarta.ejb.EJBException or the java.rmi.RemoteException exception from a
method invocation, the client, in general, does not know if the enterprise bean’s method has been
completed or not.

If the client executes in the context of a transaction, the client’s transaction may, or may not, have been
marked for rollback by the communication subsystem or target bean’s container.

For example, the transaction would be marked for rollback if the underlying transaction service or the
target bean’s container doubted the integrity of the data because the business method may have been
partially completed. Partial completion could happen, for example, when the target bean’s method
returned with a RuntimeException exception, or if the remote server crashed in the middle of executing the
business method.

The transaction may not necessarily be marked for rollback. This might occur, for example, when the
communication subsystem on the client-side has not been able to send the request to the server.

When a client executing in a transaction context receives an EJBException or a RemoteException from an
enterprise bean invocation, the client may use either of the following strategies to deal with the
exception:

• Discontinue the transaction. If the client is the transaction originator, it may simply rollback its
transaction. If the client is not the transaction originator, it can mark the transaction for rollback or
perform an action that will cause a rollback. For example, if the client is an enterprise bean, the
enterprise bean may throw a RuntimeException which will cause the container to rollback the
transaction.

• Continue the transaction. The client may perform additional operations on the same or other
enterprise beans, and eventually attempt to commit the transaction. If the transaction was marked
for rollback at the time the EJBException or RemoteException was thrown to the client, the commit
will fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction status
to avoid fruitless computation on a transaction that has been marked for rollback. A client that is an
enterprise bean with container-managed transaction demarcation can use the
EJBContext.getRollbackOnly method to test if the transaction has been marked for rollback; a client that
is an enterprise bean with bean-managed transaction demarcation, and other client types, can use the
UserTransaction.getStatus method to obtain the status of the transaction.

Some implementations of Enterprise Beans servers and containers may provide more detailed
exception reporting by throwing an appropriate subclass of the jakarta.ejb.EJBException or

9.4. Client’s View of Exceptions

Final Jakarta® Enterprise Beans, Core Features 193

java.rmi.RemoteException to the client. The following subsections describe the several subclasses of the
jakarta.ejb.EJBException and java.rmi.RemoteException that may be thrown by the container to give
the client more information.

9.4.2.1. jakarta.ejb.EJBTransactionRolledbackException,
jakarta.ejb.TransactionRolledbackLocalException, and
jakarta.transaction.TransactionRolledbackException

The jakarta.ejb.EJBTransactionRolledbackException and
jakarta.ejb.TransactionRolledbackLocalException are subclasses of the jakarta.ejb.EJBException. The
jakarta.transaction.TransactionRolledbackException is a subclass of the java.rmi.RemoteException. It is
defined in the Jakarta Transactions standard extension.

If a client receives one of these exceptions, the client knows for certain that the transaction has been
marked for rollback. It would be fruitless for the client to continue the transaction because the
transaction can never commit.

9.4.2.2. jakarta.ejb.EJBTransactionRequiredException,
jakarta.ejb.TransactionRequiredLocalException, and
jakarta.transaction.TransactionRequiredException

The jakarta.ejb.EJBTransactionRequiredException and jakarta.ejb.TransactionRequiredLocalException
are subclasses of the jakarta.ejb.EJBException . The jakarta.transaction.TransactionRequiredException
is a subclass of the java.rmi.RemoteException. It is defined in the Jakarta Transactions standard
extension.

The jakarta.ejb.EJBTransactionRequiredException , jakarta.ejb.TransactionRequiredLocalException , or
jakarta.transaction.TransactionRequiredException informs the client that the target enterprise bean
must be invoked in a client’s transaction, and that the client invoked the enterprise bean without a
transaction context.

This error usually indicates that the application was not properly formed.

9.4.2.3. jakarta.ejb.NoSuchEJBException, jakarta.ejb.NoSuchObjectLocalException, and
java.rmi.NoSuchObjectException

The jakarta.ejb.NoSuchEJBException is a subclass of the jakarta.ejb.EJBException. It is thrown to the
client of a session bean’s business interface if a local business method cannot complete because the
Enterprise Beans object no longer exists.

The jakarta.ejb.NoSuchObjectLocalException and the java.rmi.NoSuchObjectException apply to the
business methods of the Enterprise Beans 2.1 local and remote client views respectively.

The jakarta.ejb.NoSuchObjectLocalException is a subclass of the jakarta.ejb.EJBException. It is thrown
to the client if a local business method cannot complete because the Enterprise Beans object no longer
exists.

9.4. Client’s View of Exceptions

194 Jakarta® Enterprise Beans, Core Features Final

The java.rmi.NoSuchObjectException is a subclass of the java.rmi.RemoteException. It is thrown to the
client if a remote business method cannot complete because the Enterprise Beans object no longer
exists.

9.5. System Administrator’s Responsibilities
The System Administrator is responsible for monitoring the log of the non-application exceptions and
errors logged by the container, and for taking actions to correct the problems that caused these
exceptions and errors.

[59] This may not be the case where web services protocols are used. See [4].
[60] If a transaction had been marked for rollback, the value of the rollback element has no effect.
[61] Note that the enterprise bean business method may attempt to recover from a RemoteException. The text in this
subsection applies only to the case when the business method does not wish to recover from the RemoteException.
[62] A checked exception is one that is not a subclass of java.lang.RuntimeException.
[63] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
thrown to the client instead.
[64] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
thrown to the client instead.
[65] If the business interface is a remote business interface that extends java.rmi.Remote, the
jakarta.transaction.TransactionRolledbackException is thrown to the client instead.
[66] If the business interface is a remote business interface that extends java.rmi.Remote, the
java.rmi.NoSuchObjectException is thrown to the client instead.
[67] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.RemoteException is
thrown to the client instead.
[68] If a transaction had been marked for rollback, the setting on the application exception has no effect.

9.5. System Administrator’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 195

Chapter 10. Enterprise Bean Environment
This chapter specifies how enterprise beans declare dependencies on external resources and other
objects in their environment, and how those items can be injected into enterprise beans or accessed in
the JNDI naming context.

10.1. Overview
The Application Assembler and Deployer should be able to customize an enterprise bean’s business logic
without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent from the
operational environment in which the application will be deployed. Most enterprise beans must access
resource managers and external information. The key issue is how enterprise beans can locate external
information without prior knowledge of how the external information is named and organized in the
target operational environment. The JNDI naming context and Java language metadata annotations
provide this capability.

The enterprise bean environment mechanism attempts to address both of the above issues.

This chapter is organized as follows:

• Enterprise Bean’s Environment as a JNDI Naming Context defines the general rules for the use of
the JNDI naming context and its interaction with Java language annotations that reference entries
in the naming context.

• Responsibilities by Enterprise Beans Role defines the general responsibilities for each of the
Enterprise Beans roles, such as Bean Provider, Application Assembler, Deployer, and Container
Provider.

• Simple Environment Entries defines the basic mechanisms and interfaces that specify and access
the enterprise bean’s environment. The section illustrates the use of the enterprise bean’s
environment for generic customization of the enterprise bean’s business logic.

• Enterprise Bean References defines the means for obtaining the business interface, no-interface
view, or home interface of another enterprise bean using an enterprise bean reference. An
enterprise bean reference is a special entry in the enterprise bean’s environment.

• Web Service References defines the means for obtaining the web service interface using a web
service reference. A web service reference is a special entry in the enterprise bean’s environment.

• Resource Manager Connection Factory References defines the means for obtaining a resource
manager connection factory using a resource manager connection factory reference. A resource
manager connection factory reference is a special entry in the enterprise bean’s environment.

• Resource Environment References defines the means for obtaining an administered object that is
associated with a resource (e.g., a CCI InteractionSpec) using a resource environment reference . A
resource environment reference is a special entry in the enterprise bean’s environment.

10.1. Overview

196 Jakarta® Enterprise Beans, Core Features Final

• Message Destination References defines the means for obtaining a message destination associated
with a resource using a message destination reference. Message destination references allow the
flow of messages within an application to be specified. A message destination reference is a special
entry in the enterprise bean’s environment.

• Persistence Unit References describes the means for obtaining an entity manager factory using a
persistence unit reference.

• Persistence Context References describes the means for obtaining an entity manager using a
persistence context reference.

• UserTransaction Interface describes the use by eligible enterprise beans of references to a
UserTransaction object in the bean’s environment to start, commit, and rollback transactions.

• ORB References describes the use of references to a CORBA ORB object in the enterprise bean’s
environment.

• TimerService References describes the means for obtaining a TimerService object.

• EJBContext References describes the means for obtaining a bean’s EJBContext object.

• Support for Other Resources and Configuration Parameters describes the requirements for other
resources and configuration parameters.

10.2. Enterprise Bean’s Environment as a JNDI Naming
Context
The enterprise bean’s environment is a mechanism that allows customization of the enterprise bean’s
business logic during deployment or assembly. The enterprise bean’s environment allows the
enterprise bean to be customized without the need to access or change the enterprise bean’s source
code.

Annotations and deployment descriptors are the main vehicles for conveying access information to the
Application Assembler and Deployer about beans’ requirements for customization of business logic
and access to external information.

The container implements the enterprise bean’s environment, and provides it as a JNDI naming
context. The enterprise bean’s environment is used as follows:

1. The enterprise bean makes use of entries from the environment. Entries from the environment
may be injected by the container into the bean’s fields or methods, or the methods of the bean may
access the environment using the EJBContext lookup method or the JNDI interfaces. The Bean
Provider declares in Java language metadata annotations or in the deployment descriptor all the
environment entries that the enterprise bean expects to be provided in its environment at runtime.

2. The container provides an implementation of the JNDI naming context that stores the enterprise
bean environment. The container also provides the tools that allow the Deployer to create and
manage the environment of each enterprise bean.

3. The Deployer uses the tools provided by the container to create and initialize the environment

10.2. Enterprise Bean’s Environment as a JNDI Naming Context

Final Jakarta® Enterprise Beans, Core Features 197

entries that are declared by means of the enterprise bean’s annotations or deployment descriptor.
The Deployer can set and modify the values of the environment entries.

4. The container injects entries from the environment into the enterprise bean’s fields or methods as
specified by the bean’s metadata annotations or the deployment descriptor.

5. The container makes the environment naming context available to the enterprise bean instances at
runtime. The enterprise bean’s instances can use the EJBContext lookup method or the JNDI
interfaces to obtain the values of the environment entries.

The container must make an enterprise bean’s environment available to any interceptor class and
any Jakarta XML Web Services message handler for the bean as well. The interceptor and web
service handler classes for an enterprise bean share that bean’s environment. Within the context of
this chapter, the term "bean" should be construed as including a bean’s interceptor and handler
classes unless otherwise noted.

10.2.1. Sharing of Environment Entries

For enterprise beans packaged in a standalone ejb-jar file or in an ejb-jar file within an .ear file, each
enterprise bean defines its own set of environment entries. In this case, all instances of an enterprise
bean share the same environment entries; the environment entries are not shared with other
enterprise beans.

In a .war file, there is only a single naming environment shared between all the components in the
module. For enterprise beans packaged in a .war file, all enterprise beans share this single naming
environment. The enterprise beans share their environment entries with all other enterprise bean
components and web components in the .war file.

Enterprise bean instances are not allowed to modify the bean’s environment at runtime.

Compatibility Note: If an enterprise bean written to the Enterprise Beans 2.1 API specification is deployed
multiple times in the same container, each deployment results in the creation of a distinct home. The
Deployer may set different values for the enterprise bean environment entries for each home.

In general, lookups of objects in the JNDI java: namespace are required to return a new instance of the
requested object every time. Exceptions are allowed for the following:

• The container knows the object is immutable (for example, objects of type java.lang.String), or
knows that the application can’t change the state of the object.

• The object is defined to be a singleton, such that only one instance of the object may exist in the
JVM.

• The name used for the lookup is defined to return an instance of the object that might be shared.
The name java:comp/ORB is such a name.

In these cases, a shared instance of the object may be returned. In all other cases, a new instance of the

10.2. Enterprise Bean’s Environment as a JNDI Naming Context

198 Jakarta® Enterprise Beans, Core Features Final

requested object must be returned on each lookup. Note that, in the case of resource adapter
connection objects, it is the resource adapter’s ManagedConnectionFactory implementation that is
responsible for satisfying this requirement.

Each injection of an object corresponds to a JNDI lookup. Whether a new instance of the requested
object is injected, or whether a shared instance is injected, is determined by the rules described above.

Terminology warning: The enterprise bean’s "environment" should not be confused with the "environment
properties" defined in the JNDI documentation.

10.2.2. Annotations for Environment Entries

A field or method of a bean class may be annotated to request that an entry from the bean’s
environment be injected. Any of the types of resources or other environment entries [69] described in
this chapter may be injected. Injection may also be requested using entries in the deployment
descriptor corresponding to each of these resource types. The field or method may have any access
qualifier (public, private, etc.) but must not be static.

• A field of the bean class may be the target of injection. The field must not be final. By default, the
name of the field is combined with the name of the class in which the annotation is used and is
used directly as the name in the bean’s naming context. For example, a field named myDatabase in
the class MySessionBean in the package com.acme.example would correspond to the JNDI name
java:comp/env/com.acme.example.MySessionBean/myDatabase. The annotation also allows the JNDI
name to be specified explicitly.

• Environment entries may also be injected into the bean through bean methods that follow the
naming conventions for JavaBeans™ properties. The annotation is applied to the set method for the
property, which is the method that is called to inject the environment entry. The JavaBeans
property name (not the method name) is used as the default JNDI name. For example, a method
named setMyDatabase in the same MySessionBean class would correspond to the JNDI name
java:comp/env/com.example.MySessionBean/myDatabase.

• When a deployment descriptor entry is used to specify injection, the JNDI name and the instance
variable name or property name are both specified explicitly. Note that the JNDI name is always
relative to the java:comp/env naming context.

Each resource may only be injected into a single field or method of the bean. Requesting injection of
the java:comp/env/com.example.MySessionBean/myDatabase resource into both the setMyDatabase method
and the myDatabase instance variable is an error. Note, however, that either the field or the method
could request injection of a resource of a different (non-default) name. By explicitly specifying the JNDI
name of a resource, a single resource may be injected into multiple fields or methods of multiple
classes.

Annotations may also be applied to the bean class itself. These annotations declare an entry in the
bean’s environment, but do not cause the resource to be injected. Instead, the bean is expected to use
the EJBContext lookup method or the methods of the JNDI API to lookup the entry. When the annotation
is applied to the bean class, the JNDI name and the environment entry type must be explicitly

10.2. Enterprise Bean’s Environment as a JNDI Naming Context

Final Jakarta® Enterprise Beans, Core Features 199

specified.

Annotations may appear on the bean class, or on any superclass. A resource annotation on any class in
the inheritance hierarchy defines a resource needed by the bean. However, injection of such resources
follows the Java language overriding rules for the visibility of fields and methods. A method definition
that overrides a method on a superclass defines the resource, if any, to be injected into that method. An
overriding method may request injection of a different resource than is requested by the superclass, or
it may request no injection even though the superclass method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed to overridden) by a
subclass may still request injection. This allows, for example, a private field to be the target of injection
and that field to be used in the implementation of the superclass, even though the subclass has no
visibility into that field and doesn’t know that the implementation of the superclass is using an injected
resource. Note that a declaration of a field in a subclass with the same name as a field in a superclass
always causes the field in the superclass to be hidden.

10.2.3. Annotations and Deployment Descriptors

Environment entries may be declared by the use of annotations, without need for any deployment
descriptor entries. Environment entries may also be declared by deployment descriptor entries,
without need for any annotations. The same environment entry may be declared using both an
annotation and a deployment descriptor entry. In this case, the information in the deployment
descriptor entry may be used to override some of the information provided in the annotation. This
approach may be used by an Application Assembler to override information provided by the Bean
Provider. Deployment descriptor entries should not be used to request injection of a resource into a
field or method that has not been designed for injection.

The following rules apply to how a deployment descriptor entry may override a Resource annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The type specified in the deployment descriptor must be assignable to the type of the field or
property or the type specified in the Resource annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property method.

• The mapped-name element, if specified, overrides the mappedName element of the annotation.

• The res-sharing-scope element, if specified, overrides the shareable element of the annotation. In
general, the Application Assembler or Deployer should never change the value of this element, as
doing so is likely to break the application.

• The res-auth element, if specified, overrides the authenticationType element of the annotation. In
general, the Application Assembler or Deployer should never change the value of this element, as
doing so is likely to break the application.

• The lookup-name element, if specified, overrides the lookup element of the annotation.

10.2. Enterprise Bean’s Environment as a JNDI Naming Context

200 Jakarta® Enterprise Beans, Core Features Final

Restrictions on the overriding of environment entry values depend on the type of environment entry.

The rules for how a deployment descriptor entry may override an Enterprise Beans annotation are
described in Enterprise Bean References. The rules for how a deployment descriptor entry may
override a PersistenceUnit or PersistenceContext annotation are described in Persistence Unit
References and Persistence Context References. The rules for web services references and how a
deployment descriptor entry may override a WebServiceRef annotation are included in the Jakarta
Enterprise Web Services specification[5].

10.3. Responsibilities by Enterprise Beans Role
This section describes the responsibilities of the various Enterprise Beans roles with regard to the
specification and handling of environment entries. The sections that follow describe the
responsibilities that are specific to the different types of objects that may be stored in the naming
context.

10.3.1. Bean Provider’s Responsibilities

The Bean Provider may use Java language annotations or deployment descriptor entries to request
injection of a resource from the naming context, or to declare entries that are needed in the naming
context. The Bean Provider may also use the EJBContext lookup method or the JNDI APIs to access
entries in the naming context. Deployment descriptor entries may also be used by the Bean Provider to
override information provided by annotations.

When using JNDI interfaces directly, an enterprise bean instance creates a
javax.naming.InitialContext object by using the constructor with no arguments, and looks up the
environment naming via the InitialContext under the name java:comp/env.

The enterprise bean’s environment entries are stored directly in the environment naming context, or
in any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the metadata
annotation or deployment descriptor, or the type of the instance variable or setter method parameter
of the method with which the metadata annotation is associated.

10.3.2. Application Assembler’s Responsibility

The Application Assembler is allowed to modify the values of the environment entries set by the Bean
Provider, and is allowed to set the values of those environment entries for which the Bean Provider
has not specified any initial values. The Application Assembler uses the deployment descriptor to
override settings made by the Bean Provider, whether these were defined by the Bean Provider in the
deployment descriptor or in the source code using annotations.

10.3. Responsibilities by Enterprise Beans Role

Final Jakarta® Enterprise Beans, Core Features 201

10.3.3. Deployer’s Responsibility

The Deployer must ensure that the values of all the environment entries declared by an enterprise
bean are created and/or set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help the Deployer
with this task.

10.3.4. Container Provider Responsibility

The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the enterprise
bean’s environment entries.

• Implement the java:comp/env, java:module, java:app and java:global environment naming contexts,
and provide them to the enterprise bean instances at runtime. The naming context must include all
the environment entries declared by the Bean Provider, with their values supplied in the
deployment descriptor or set by the Deployer. The environment naming context must allow the
Deployer to create subcontexts if they are needed by an enterprise bean.

• Inject entries from the naming environment, as specified by annotations or by the deployment
descriptor.

• The container must ensure that the enterprise bean instances have only read access to their
environment variables. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the javax.naming.Context
interface that modify the environment naming context and its subcontexts.

10.4. Simple Environment Entries
A simple environment entry is a configuration parameter used to customize an enterprise bean’s
business logic. The environment entry values may be one of the following Java types: String, Character,
Byte, Short, Integer, Long, Boolean, Double, Float, Class, and any subclass of Enum.

The following subsections describe the responsibilities of each Enterprise Beans role.

10.4.1. Bean Provider’s Responsibilities

This section describes the Bean Provider’s view of the bean’s environment, and defines his or her
responsibilities. The first subsection describes annotations for injecting simple environment entries;
the second describes the API for accessing simple environment entries; and the third describes syntax
for declaring the environment entries in a deployment descriptor.

10.4. Simple Environment Entries

202 Jakarta® Enterprise Beans, Core Features Final

10.4.1.1. Injection of Simple Environment Entries Using Annotations

The Bean Provider uses the Resource annotation to annotate a field or method of the bean class as a
target for the injection of a simple environment entry. The name of the environment entry is as
described in Annotations for Environment Entries; the type is as described in Simple Environment
Entries. Note that the container will unbox the environment entry as required to match it to a
primitive type used for the injection field or method. The authenticationType and shareable elements of
the Resource annotation must not be specified: simple environment entries are not shareable and do
not require authentication.

The following code example illustrates how an enterprise bean uses annotations for the injection of
environment entries.

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 ...
 // The maximum number of tax exemptions, configured by Deployer
 @Resource
 int maxExemptions;

 // The minimum number of tax exemptions, configured by Deployer
 @Resource
 int minExemptions;

 public void setTaxInfo(int numberOfExemptions,...)
 throws InvalidNumberOfExemptionsException {
 ...
 // Use the environment entries to customize business logic.
 if (numberOfExemptions > maxExemptions
 || numberOfExemptions < minExemptions)
 throw new InvalidNumberOfExemptionsException();
 }
}

The following code example illustrates how an environment entry can be assigned a value by referring
to another entry, potentially in a different namespace.

// an entry that gets its value from an application-wide entry
@Resource(lookup="java:app/env/timeout")
int timeout;

10.4.1.2. Programming Interfaces for Accessing Simple Environment Entries

In addition to the use of injection as described above, an enterprise bean may access environment
entries dynamically. This may be done by means of the EJBContext lookup method or by direct use of

10.4. Simple Environment Entries

Final Jakarta® Enterprise Beans, Core Features 203

the JNDI interfaces. The environment entries are declared by the Bean Provider by means of
annotations on the bean class or in the deployment descriptor.

When the JNDI interfaces are used directly, the bean instance creates a javax.naming.InitialContext
object by using the constructor with no arguments, and looks up the naming environment via the
InitialContext under the name java:comp/env. The bean’s environmental entries are stored directly in
the environment naming context, or its direct or indirect subcontexts.

The following code example illustrates how an enterprise bean accesses its environment entries when
the JNDI APIs are used directly. In this example, the names under which the entries are accessed are
defined by the deployment descriptor, as shown in the example of Declaration of Simple Environment
Entries in the Deployment Descriptor.

10.4. Simple Environment Entries

204 Jakarta® Enterprise Beans, Core Features Final

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 ...
 public void setTaxInfo(int numberOfExemptions, ...)
 throws InvalidNumberOfExemptionsException {
 ...
 // Obtain the enterprise bean’s environment naming context.
 Context initCtx = new InitialContext();
 Context myEnv = (Context)initCtx.lookup("java:comp/env");

 // Obtain the maximum number of tax exemptions
 // configured by the Deployer.
 Integer maxExemptions = (Integer)myEnv.lookup("maxExemptions");

 // Obtain the minimum number of tax exemptions
 // configured by the Deployer.
 Integer minExemptions = (Integer)myEnv.lookup("minExemptions");

 // Use the environment entries to customize business logic.
 if (numberOfExeptions > maxExemptions
 || numberOfExemptions < minExemptions)
 throw new InvalidNumberOfExemptionsException();

 // Get some more environment entries. These environment
 // entries are stored in subcontexts.
 String val1 = (String)myEnv.lookup("foo/name1");
 Boolean val2 = (Boolean)myEnv.lookup("foo/bar/name2");

 // The enterprise bean can also lookup using full pathnames.
 Integer val3 = (Integer)initCtx.lookup("java:comp/env/name3");
 Integer val4 = (Integer)initCtx.lookup("java:comp/env/foo/name4");
 ...
 }
}

10.4.1.3. Declaration of Simple Environment Entries in the Deployment Descriptor

The Bean Provider must declare all the simple environment entries accessed from the enterprise
bean’s code. The simple environment entries are declared either using annotations in the bean class
code or using the env-entry elements in the deployment descriptor.

Each env-entry deployment descriptor element describes a single environment entry. The env-entry
element consists of an optional description of the environment entry, the environment entry name
relative to the java:comp/env context, the expected Java type of the environment entry value (i.e., the
type of the object returned from the EJBContext or JNDI lookup method), and an optional environment
entry value.

10.4. Simple Environment Entries

Final Jakarta® Enterprise Beans, Core Features 205

See Sharing of Environment Entries for environment entry name scoping rules.

If the Bean Provider provides a value for an environment entry using the env-entry-value element, the
value can be changed later by the Application Assembler or Deployer. The value must be a string that
is valid for the constructor of the specified type that takes a single String parameter, or for
java.lang.Character, a single character.

The following example is the declaration of environment entries used by the EmployeeServiceBean
whose code was illustrated in the previous subsection.

10.4. Simple Environment Entries

206 Jakarta® Enterprise Beans, Core Features Final

<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <env-entry>
 <description>
 The maximum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>maxExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
 </env-entry>
 <env-entry>
 <description>
 The minimum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>minExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>foo/name1</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>value1</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>foo/bar/name2</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>true</env-entry-value>
 </env-entry>
 <env-entry>
 <description>Some description.</description>
 <env-entry-name>name3</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 </env-entry>
 <env-entry>
 <env-entry-name>foo/name4</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>10</env-entry-value>
 </env-entry>
 ...
 </session>
</enterprise-beans>

10.4. Simple Environment Entries

Final Jakarta® Enterprise Beans, Core Features 207

Injection of environment entries may also be specified using the deployment descriptor, without need
for Java language annotations. The following is an example of the declaration of environment entries
corresponding to the example of Injection of Simple Environment Entries Using Annotations.

10.4. Simple Environment Entries

208 Jakarta® Enterprise Beans, Core Features Final

<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <env-entry>
 <description>
 The maximum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>
 com.wombat.empl.EmployeeService/maxExemptions
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
 <injection-target>
 <injection-target-class>
 com.wombat.empl.EmployeeServiceBean
 </injection-target-class>
 <injection-target-name>maxExemptions</injection-target-name>
 </injection-target>
 </env-entry>
 <env-entry>
 <description>
 The minimum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>
 com.wombat.empl.EmployeeService/minExemptions
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
 <injection-target>
 <injection-target-class>
 com.wombat.empl.EmployeeServiceBean
 </injection-target-class>
 <injection-target-name>minExemptions</injection-target-name>
 </injection-target>
 </env-entry>
 ...
 </session>
</enterprise-beans>

It is often convenient to declare a field as an injection target, but to specify a default value in the code,
as illustrated in the following example.

10.4. Simple Environment Entries

Final Jakarta® Enterprise Beans, Core Features 209

// The maximum number of tax exemptions, configured by the Deployer.
@Resource
int maxExemptions = 4; // defaults to 4

To support this case, the container must only inject a value for the environment entry if the
Application Assembler or Deployer has specified a value to override the default value. The env-entry-
value element in the deployment descriptor is optional when an injection target is specified. If the
element is not specified, no value will be injected. In addition, if the element is not specified, the
named resource is not initialized in the naming context, and explicit lookups of the named resource
will fail.

The deployment descriptor equivalent of the lookup element of the Resource annotation is lookup-name.
The following deployment descriptor fragment is equivalent to the earlier example that used lookup.

<env-entry>
 <env-entry-name>
 com.wombat.empl.EmployeeServiceBean/timeout
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <injection-target>
 <injection-target-class>
 com.wombat.empl.EmployeeServiceBean
 </injection-target-class>
 <injection-target-name>timeout</injection-target-name>
 </injection-target>
 <lookup-name>java:app/env/timeout</lookup-name>
</env-entry>

It is an error for both the env-entry-value and lookup-name elements to be specified for a given env-
entry element. If either element exists, an eventual lookup element of the corresponding Resource
annotation (if any) must be ignored. In other words, assignment of a value to an environment entry via
a deployment descriptor, either directly (env-entry-value) or indirectly (lookup-name), overrides any
assignments made via annotations.

10.4.2. Application Assembler’s Responsibility

The Application Assembler is allowed to modify the values of the simple environment entries set by
the Bean Provider, and is allowed to set the values of those environment entries for which the Bean
Provider has not specified any initial values. The Application Assembler may use the deployment
descriptor to override settings made by the Bean Provider, whether in the deployment descriptor or
using annotations.

10.4. Simple Environment Entries

210 Jakarta® Enterprise Beans, Core Features Final

10.4.3. Deployer’s Responsibility

The Deployer must ensure that the values of all the simple environment entries declared by an
enterprise bean are set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help the Deployer
with this task.

10.4.4. Container Provider Responsibility

The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the enterprise
bean’s environment entries.

• Implement the java:comp/env, java:module, java:app and java:global environment naming contexts,
and provide them to the enterprise bean instances at runtime. The naming context must include all
the environment entries declared by the Bean Provider, with their values supplied in the
deployment descriptor or set by the Deployer. The environment naming context must allow the
Deployer to create subcontexts if they are needed by an enterprise bean.

• Inject entries from the naming environment into the bean instance, as specified by the annotations
on the bean class or by the deployment descriptor.

• The container must ensure that the enterprise bean instances have only read access to their
environment variables. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the javax.naming.Context
interface that modify the environment naming context and its subcontexts.

10.5. Enterprise Bean References
This section describes the programming and deployment descriptor interfaces that allow the Bean
Provider to refer to the business interfaces, no-interface views, or home interfaces of other enterprise
beans using "logical" names called enterprise bean references. The enterprise bean references are
special entries in the enterprise bean’s environment. The Deployer binds the enterprise bean
references to the enterprise bean business interfaces, no-interface views, or home interfaces in the
target operational environment, as appropriate.

The deployment descriptor also allows the Application Assembler to link an enterprise bean reference
declared in one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in
another ejb-jar file in the same Jakarta EE application unit. The link is an instruction to the tools used
by the Deployer that the enterprise bean reference should be bound to the business interface, no-
interface view, or home interface of the specified target enterprise bean. This linking can also be

10.5. Enterprise Bean References

Final Jakarta® Enterprise Beans, Core Features 211

specified by the Bean Provider using annotations in the source code of the bean class.

10.5.1. Bean Provider’s Responsibilities

This section describes the Bean Provider’s view and responsibilities with respect to enterprise bean
references. The first subsection describes annotations for injecting enterprise bean references; the
second describes the API for accessing enterprise bean references; and the third describes syntax for
declaring the enterprise bean references in a deployment descriptor.

10.5.1.1. Injection of Enterprise Bean References

The Bean Provider uses the EJB annotation to annotate a field or setter property method of the bean
class as a target for the injection of an enterprise bean reference.

EJB annotation contains the following elements:

• The name element refers to the name by which the resource is to be looked up in the environment.

• The beanInterface element is the referenced interface type. The reference may be to a session
bean’s business interface, to a session bean’s no-interface view, or to the local home interface or
remote home interface of a session bean or an entity bean.[70]

• The beanName element references the value of the name element of the Stateful or Stateless
annotation (or ejb-name element, if the deployment descriptor was used to define the name of th
bean). The beanName element allows disambiguation if multiple session beans in the ejb-jar
implement the same interface.

• The mappedName element is a product-specific name that the bean reference should be mapped to.
Applications that use mapped names may not be portable.

• The lookup element is a portable lookup string containing the JNDI name for the target enterprise
bean component.

Either the beanName or the lookup element can be used to resolve the enterprise bean dependency to the
target component. It is an error to specify values for both beanName and lookup.

The following example illustrates how an enterprise bean uses the EJB annotation to reference another
enterprise bean. The enterprise bean reference will have the name
java:comp/env/com.acme.example.ExampleBean/myCart in the referencing bean’s naming context, where
ExampleBean is the name of the class of the referencing bean and com.acme.example its package. The
target of the reference must be resolved by the Deployer, unless there is only one session bean
component within the same application that exposes a client view type which matches the enterprise
bean reference.

10.5. Enterprise Bean References

212 Jakarta® Enterprise Beans, Core Features Final

package com.acme.example;
@Stateless
public class ExampleBean implements Example {
 ...
 @EJB
 private ShoppingCart myCart;
 ...
}

The following example illustrates use of almost all portable elements of the EJB annotation. In this case,
the enterprise bean reference would have the name java:comp/env/ejb/shopping-cart in the
referencing bean’s naming context. This reference is linked to a bean named cart1 .

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCart.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCart myCart;

As an alternative to beanName, a reference to an enterprise bean can use a session bean JNDI name by
means of the lookup annotation element. The following example uses a JNDI name in the application
namespace.

@EJB(
 lookup="java:app/cartModule/ShoppingCart",
 description="The shopping cart for this application"
)
private ShoppingCart myOtherCart;

If the ShoppingCart bean were instead written to the Enterprise Beans 2.1 client view, the enterprise
bean reference would be to the bean’s home interface. For example:

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartHome.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCartHome myCartHome;

10.5. Enterprise Bean References

Final Jakarta® Enterprise Beans, Core Features 213

If the ShoppingCart bean were instead written to the no-interface client view and was implemented by
bean class ShoppingCartBean.class, the EJB reference would have type ShoppingCartBean.class. For
example:

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartBean.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCartBean myCart;

10.5.1.2. Enterprise Bean Reference Programming Interfaces

The Bean Provider may use enterprise bean references to locate the business interfaces, no-interface
views, or home interfaces of other enterprise beans as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See Declaration of
Enterprise Bean References in Deployment Descriptor for information on how enterprise bean
references are declared in the deployment descriptor.)

• The Enterprise Beans specification recommends, but does not require, that all references to other
enterprise beans be organized in the ejb subcontext of the bean’s environment (i.e., in the
java:comp/env/ejb JNDI context). Note that enterprise bean references declared by means of
annotations will not, by default, be in any subcontext.

• Look up the business interface, no-interface view, or home interface of the referenced enterprise
bean in the enterprise bean’s environment using the EJBContext lookup method or the JNDI API.

The following example illustrates how an enterprise bean uses an enterprise bean reference to locate
the remote home interface of another enterprise bean using the JNDI APIs.

10.5. Enterprise Bean References

214 Jakarta® Enterprise Beans, Core Features Final

@EJB(name="ejb/EmplRecord", beanInterface=EmployeeRecordHome.class)
@Stateless
public class EmployeeServiceBean
 implements EmployeeService {

 public void changePhoneNumber(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the home interface of the EmployeeRecord
 // enterprise bean in the environment.
 Object result = initCtx.lookup(
 "java:comp/env/ejb/EmplRecord");

 // Convert the result to the proper type.
 EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
 javax.rmi.PortableRemoteObject.narrow(result,
 EmployeeRecordHome.class);
 ...
 }
}

In the example, the Bean Provider of the EmployeeServiceBean enterprise bean assigned the
environment entry ejb/EmplRecord as the enterprise bean reference name to refer to the remote home
of another enterprise bean.

10.5.1.3. Declaration of Enterprise Bean References in Deployment Descriptor

Although the enterprise bean reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use a env-entry element to declare it. Instead, the Bean Provider must declare all the
enterprise bean references using the ejb-ref and ejb-local-ref elements of the deployment descriptor.
This allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the enterprise
bean references used by the enterprise bean. Deployment descriptor entries may also be used to
specify injection of an enterprise bean reference into a bean.

Each ejb-ref or ejb-local-ref element describes the interface requirements that the referencing
enterprise bean has for the referenced enterprise bean. The ejb-ref element is used for referencing an
enterprise bean that is accessed through its remote business interface or remote home and component
interfaces. The ejb-local-ref element is used for referencing an enterprise bean that is accessed
through its local business interface, no-interface view, local home and component interfaces.

The ejb-ref element contains the description, ejb-ref-name, ejb-ref-type, home, remote, ejb-link, and
lookup-name elements.

The ejb-local-ref element contains the description, ejb-ref-name, ejb-ref-type, local-home , local, ejb-

10.5. Enterprise Bean References

Final Jakarta® Enterprise Beans, Core Features 215

link, and lookup-name elements.

The ejb-ref-name element specifies the enterprise bean reference name: its value is the environment
entry name used in the enterprise bean code. The ejb-ref-name must be specified.

The optional ejb-ref-type element specifies the expected type of the enterprise bean: its value must be
either Entity [71] or Session.

The home and remote or local-home and local elements specify the expected Java types of the referenced
enterprise bean’s interface(s). If the reference is to an Enterprise Beans 2.1 remote client view
interface, the home element is required. Likewise, if the reference is to an Enterprise Beans 2.1 local
client view interface, the local-home element is required. The remote element of the ejb-ref element
refers to either the remote business interface type or the remote component interface, depending on
whether the reference is to a bean’s Enterprise Beans 3.x or Enterprise Beans 2.1 remote client view.
Likewise, the local element of the ejb-local-ref element refers to either the local business interface
type, bean class type or the local component interface type, depending on whether the reference is to a
bean’s Enterprise Beans 3.x local business interface, no-interface view, or Enterprise Beans 2.1 local
client view respectively.

The ejb-link element is used to like an enterprise bean reference to a target bean, and is described in
Application Assembler’s Responsibilities below.

The lookup-name element specifies the JNDI name of the enterprise bean reference’s target session
bean, and is described further in Application Assembler’s Responsibilities below.

See Sharing of Environment Entries for the name scoping rules of enterprise bean references.

The following example illustrates the declaration of enterprise bean references in the deployment
descriptor.

10.5. Enterprise Bean References

216 Jakarta® Enterprise Beans, Core Features Final

...
 <enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <ejb-ref>
 <description>
 This is a reference to an Enterprise Beans 2.1 session
 bean that encapsulates access to employee records.
 </description>
 <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 </ejb-ref>
 <ejb-local-ref>
 <description>
 This is a reference to the local business interface
 of an Enterprise Beans 3.0 session bean that provides a payroll
 service.
 </description>
 <ejb-ref-name>ejb/Payroll</ejb-ref-name>
 <local>com.aardvark.payroll.Payroll</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <description>
 This is a reference to the local business interface
 of an Enterprise Beans 3.0 session bean that provides a pension
 plan service.
 </description>
 <ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
 <local>com.wombat.empl.PensionPlan</local>
 </ejb-local-ref>
 ...
 </session>
 ...
 </enterprise-beans>
...

10.5.2. Application Assembler’s Responsibilities

The Application Assembler can use the ejb-link element in the deployment descriptor to link an
enterprise bean reference to a target enterprise bean within the same application.

10.5. Enterprise Bean References

Final Jakarta® Enterprise Beans, Core Features 217

The Application Assembler specifies the link between two enterprise beans as follows:

• The Application Assembler uses the optional ejb-link element of the ejb-ref or ejb-local-ref
element of the referencing enterprise bean. The value of the ejb-link element is the name of the
target enterprise bean. (This is the bean name as defined by metadata annotation (or default) in the
bean class or in the ejb-name element of the target enterprise bean.) The target enterprise bean can
be in any ejb-jar file or .war file in the same Jakarta EE application as the referencing application
component.

• Alternatively, to avoid the need to rename enterprise beans to have unique names within an entire
Jakarta EE application, the Application Assembler may use either of the following two syntaxes in
the ejb-link element of the referencing application component.[72]

◦ The Application Assembler specifies the module name of the ejb-jar file or .war file containing
the referenced enterprise bean and appends the ejb-name of the target bean separated by /.
The module name is the name of the module in which the enterprise bean is packaged, with no
filename extension, unless the module-name element is specified in the module’s deployment
descriptor.

◦ The Application Assembler specifies the path name of the ejb-jar file or .war file containing the
referenced enterprise bean and appends the ejb-name of the target bean separated from the
path name by #. The path name is relative to the referencing application component jar file. In
this manner, multiple beans with the same ejb-name may be uniquely identified when the
Application Assembler cannot change ejb-names.

• Rather than using ejb-link to resolve the enterprise bean reference, the Application Assembler
may use the lookup-name element to reference the target enterprise bean component by means of
one of its JNDI names. It is an error for both ejb-link and lookup-name to be specified within an ejb-
ref or ejb-local-ref element.

• The Application Assembler must ensure that the target enterprise bean is type-compatible with the
declared enterprise bean reference. This means that the target enterprise bean must be of the type
indicated in the ejb-ref-type element, if present, and that the business interface, bean class, or
home and component interfaces of the target enterprise bean must be Java type-compatible with
the type declared in the enterprise bean reference.

The following illustrates the use of an ejb-link in the deployment descriptor.

10.5. Enterprise Bean References

218 Jakarta® Enterprise Beans, Core Features Final

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <ejb-ref>
 <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 <ejb-link>EmployeeRecord</ejb-link>
 </ejb-ref>
 ...
 </session>
 ...
 <session>
 <ejb-name>EmployeeRecord</ejb-name>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 ...
 </session>
 ...
</enterprise-beans>
...

The Application Assembler uses the ejb-link element to indicate that the enterprise bean reference
EmplRecord declared in the EmployeeService enterprise bean has been linked to the EmployeeRecord
enterprise bean.

The following example illustrates using the ejb-link element to indicate an enterprise bean reference
to the ProductEJB enterprise bean that is in the same Jakarta EE application unit but in a different ejb-
jar file.

10.5. Enterprise Bean References

Final Jakarta® Enterprise Beans, Core Features 219

 <session>
 ...
 <ejb-name>OrderEJB</ejb-name>
 <ejb-class>com.wombat.orders.OrderBean</ejb-class>
 ...
 <ejb-ref>
 <ejb-ref-name>ejb/Product</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.acme.orders.ProductHome</home>
 <remote>com.acme.orders.Product</remote>
 <ejb-link>../products/product.jar#ProductEJB</ejb-link>
 </ejb-ref>
 ...
</session>

The following example illustrates using the ejb-link element to indicate an enterprise bean reference
to the ShoppingCart enterprise bean that is in the same Jakarta EE application unit but in a different
ejb-jar file. The reference was originally declared in the bean’s code using an annotation. The
Application Assembler provides only the link to the bean.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <ejb-link>product/ShoppingCart</ejb-link>
</ejb-ref>
...

The same effect can be obtained with the lookup-name element instead, using an appropriate JNDI name
for the target bean.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <lookup-name>java:app/products/ShoppingCart</lookup-name>
</ejb-ref>
...

10.5.2.1. Overriding Rules

The following rules apply to how a deployment descriptor entry may override an EJB annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

10.5. Enterprise Bean References

220 Jakarta® Enterprise Beans, Core Features Final

• The type specified in the deployment descriptor via the remote , local , remote-home , or local-home
element and any bean referenced by the ejb-link element must be assignable to the type of the
field or property or the type specified by the beanInterface element of the EJB annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property method.

10.5.3. Deployer’s Responsibility

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared enterprise bean references are bound to the
business interfaces, no-interface views, or home interfaces of enterprise beans that exist in the
operational environment. For session beans, the Deployer may use the information provided by the
Bean Provider in the mappedName element of the EJB annotation or the mapped-name element of
the ejb-ref or ejb-local-ref deployment descriptor element in creating this binding. Access in the
Global JNDI Namespace describes the syntax for session bean portable global JNDI names. The
Deployer may also use, for example, the JNDI LinkRef mechanism to create a symbolic link to the
actual JNDI name of the target enterprise bean.

• The Deployer must ensure that the target enterprise bean is type-compatible with the types
declared for the enterprise bean reference. This means that the target enterprise bean must be of
the type indicated by the use of the EJB annotation, by the ejb-ref-type element (if specified), and
that the business interface, no-interface view, and/or home and component interfaces of the target
enterprise bean must be Java type-compatible with the type of the injection target or the types
declared in the enterprise bean reference.

• If an EJB annotation includes the beanName element or the ejb-ref or ejb-local-ref element includes
the ejb-link element, the Deployer should bind the enterprise bean reference to the enterprise
bean specified as the target.

• If an EJB annotation includes the lookup element or the the ejb-ref or ejb-local-ref element
includes the lookup-name element, the Deployer should bind the enterprise bean reference to the
enterprise bean specified as the target. It is an error for an enterprise bean reference declaration to
include both an ejb-link and a lookup-name element.

The following example illustrates the use of the lookup-name element to bind an enterprise bean
reference to a target enterprise bean in the operational environment. The reference was originally
declared in the bean’s code using an annotation. The target enterprise bean has ejb-name ShoppingCart
and is deployed in the stand-alone module products.jar.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <lookup-name>java:global/products/ShoppingCart</lookup-name>
</ejb-ref>

10.5. Enterprise Bean References

Final Jakarta® Enterprise Beans, Core Features 221

10.5.4. Container Provider’s Responsibility

The Container Provider must provide the deployment tools that allow the Deployer to perform the
tasks described in the previous subsection. The deployment tools provided by the Container Provider
must be able to process the information supplied in the ejb-ref and ejb-local-ref elements in the
deployment descriptor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in annotations or in the ejb-link elements by
binding an enterprise bean reference to the business interface, no-interface view, or the home
interface of the specified target bean.

• Inform the Deployer of any unresolved enterprise bean references, and allow him or her to resolve
an enterprise bean reference by binding it to a specified compatible target bean.

10.6. Web Service References
Web service references allow the Bean Provider to refer to external web services. The web service
references are special entries in the enterprise bean’s environment. The Deployer binds the web
service references to the web service classes or interfaces in the target operational environment.

The specification of web service references and their usage is defined in the Jakarta XML Web Services
[4] and Jakarta Enterprise Web Services specifications[5].

See Sharing of Environment Entries for the name scoping rules of web service references.

The Enterprise Beans specification recommends, but does not require, that all references to web
services be organized in the service subcontext of the bean’s environment (i.e., in the
java:comp/env/service JNDI context).

10.7. Resource Manager Connection Factory References
A resource manager connection factory is an object that is used to create connections to a resource
manager. For example, an object that implements the javax.sql.DataSource interface is a resource
manager connection factory for java.sql.Connection objects that implement connections to a database
management system.

This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to resource factories using logical names called resource manager
connection factory references. The resource manager connection factory references are special entries
in the enterprise bean’s environment. The Deployer binds the resource manager connection factory
references to the actual resource manager connection factories that are configured in the container.
Because these resource manager connection factories allow the container to affect resource
management, the connections acquired through the resource manager connection factory references
are called managed resources (e.g., these resource manager connection factories allow the container to

10.6. Web Service References

222 Jakarta® Enterprise Beans, Core Features Final

implement connection pooling and automatic enlistment of the connection with a transaction).

10.7.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view of locating resource factories and defines his or her
responsibilities. The first subsection describes annotations for injecting references to resource
manager connection factories; the second describes the API for accessing resource manager
connection references; and the third describes syntax for declaring the resource manager connection
references in a deployment descriptor.

10.7.1.1. Injection of Resource Manager Connection Factory References

A field or a method of an enterprise bean may be annotated with the Resource annotation. The name
and type of the factory are as described above in Annotations for Environment Entries. The
authenticationType and shareable elements of the Resource annotation may be used to control the type
of authentication desired for the resource and the shareability of connections acquired from the
factory, as described in the following sections.

The following code example illustrates how an enterprise bean uses annotations to declare resource
manager connection factory references.

//The employee database.
@Resource
javax.sql.DataSource employeeAppDB;
...
public void changePhoneNumber(...) {
 ...
 // Invoke factory to obtain a resource. The security
 // principal for the resource is not given, and
 // therefore it will be configured by the Deployer.
 java.sql.Connection con = employeeAppDB.getConnection();
 ...
}

The same resource manager can be declared using the JNDI name of an entry to which the resource
being defined will be bound.

// The customer database, looked up in the application environment.
@Resource(lookup="java:app/env/employeeAppDB")
javax.sql.DataSource employeeAppDB;

10.7.1.2. Programming Interfaces for Resource Manager Connection Factory References

The Bean Provider must use resource manager connection factory references to obtain connections to

10.7. Resource Manager Connection Factory References

Final Jakarta® Enterprise Beans, Core Features 223

resources as follows.

• Assign an entry in the enterprise bean’s environment to the resource manager connection factory
reference. (See Declaration of Resource Manager Connection Factory References in Deployment
Descriptor for information on how resource manager connection factory references are declared
in the deployment descriptor.)

• The Enterprise Beans specification recommends, but does not require, that all resource manager
connection factory references be organized in the subcontexts of the bean’s environment, using a
different subcontext for each resource manager type. For example, all JDBC data source references
might be declared in the java:comp/env/jdbc subcontext, and all Jakarta Messaging connection
factories in the java:comp/env/jms subcontext. Also, all Jakarta® Mail connection factories might be
declared in the java:comp/env/mail subcontext and all URL connection factories in the
java:comp/env/url subcontext. Note that resource manager connection factory references declared
via annotations will not, by default, appear in any subcontext.

• Lookup the resource manager connection factory object in the enterprise bean’s environment
using the EJBContext lookup method or using the JNDI API.

• Invoke the appropriate method on the resource manager connection factory to obtain a connection
to the resource. The factory method is specific to the resource type. It is possible to obtain multiple
connections by calling the factory object multiple times.

The Bean Provider can control the shareability of the connections acquired from the resource manager
connection factory. By default, connections to a resource manager are shareable across other
enterprise beans in the application that use the same resource in the same transaction context. The
Bean Provider can specify that connections obtained from a resource manager connection factory
reference are not shareable by specifying the value of the shareable annotation element to false or the
value of the res-sharing-scope deployment descriptor element to be Unshareable . The sharing of
connections to a resource manager allows the container to optimize the use of connections and
enables the container’s use of local transaction optimizations.

The Bean Provider has two choices with respect to dealing with associating a principal with the
resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign-on information. In this
case, the enterprise bean code invokes a resource manager connection factory method that has no
security-related parameters.

• Sign on to the resource manager from the bean code. In this case, the enterprise bean invokes the
appropriate resource manager connection factory method that takes the sign-on information as
method parameters.

The Bean Provider uses the authenticationType annotation element or the res-auth deployment
descriptor element to indicate which of the two resource manager authentication approaches is used.

We expect that the first form (i.e., letting the Deployer set up the resource manager sign-on information)
will be the approach used by most enterprise beans.

10.7. Resource Manager Connection Factory References

224 Jakarta® Enterprise Beans, Core Features Final

The following code sample illustrates obtaining a JDBC connection when the EJBContext lookup method
is used.

@Resource(name="jdbc/EmployeeAppDB", type=javax.sql.DataSource)
@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @Resource
 SessionContext ctx;
 public void changePhoneNumber(...) {
 ...
 // use context lookup to obtain resource manager
 // connection factory
 javax.sql.DataSource ds = (javax.sql.DataSource)
 ctx.lookup("jdbc/EmployeeAppDB");

 // Invoke factory to obtain a connection. The security
 // principal is not given, and therefore
 // it will be configured by the Deployer.
 java.sql.Connection con = ds.getConnection();
 ...
 }
}

The following code sample illustrates obtaining a JDBC connection when the JNDI APIs are used
directly.

10.7. Resource Manager Connection Factory References

Final Jakarta® Enterprise Beans, Core Features 225

@Resource(name="jdbc/EmployeeAppDB", type=javax.sql.DataSource)
@Stateless
public class EmployeeServiceBean implements EmployeeService {

 EJBContext ejbContext;

 public void changePhoneNumber(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain resource manager
 // connection factory
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

 // Invoke factory to obtain a connection. The security
 // principal is not given, and therefore
 // it will be configured by the Deployer.
 java.sql.Connection con = ds.getConnection();
 ...
 }
}

10.7.1.3. Declaration of Resource Manager Connection Factory References in Deployment
Descriptor

Although a resource manager connection factory reference is an entry in the enterprise bean’s
environment, the Bean Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the resource
manager connection factory references in the deployment descriptor using the resource-ref elements.
This allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the resource
manager connection factory references used by an enterprise bean. Deployment descriptor entries
may also be used to specify injection of a resource manager connection factor reference into a bean.

See Section "Declaration of Resource Manager Connection Factory References in Deployment
Descriptor" in the Jakarta EE Platform specification [18] for the description of the resource-ref
element.

See Sharing of Environment Entries for the name scoping rules of resource manager connection
factory references.

The type declaration allows the Deployer to identify the type of the resource manager connection
factory.

10.7. Resource Manager Connection Factory References

226 Jakarta® Enterprise Beans, Core Features Final

Note that the indicated type is the Java type of the resource factory, not the Java type of the resource.

The following example is the declaration of resource manager connection factory references used by
the EmployeeService enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <resource-ref>
 <description>
 A data source for the database in which
 the EmployeeService enterprise bean will
 record a log of all transactions.
 </description>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 ...
 </session>
</enterprise-beans>
...

The following example illustrates the declaration of Jakarta Messaging resource manager connection
factory references.

10.7. Resource Manager Connection Factory References

Final Jakarta® Enterprise Beans, Core Features 227

...
<enterprise-beans>
 <session>
 ...
 <resource-ref>
 <description>
 A queue connection factory used by the
 MySession enterprise bean to send
 notifications.
 </description>
 <res-ref-name>jms/qConnFactory</res-ref-name>
 <res-type>jakarta.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
 </resource-ref>
 ...
 </session>
</enterprise-beans>
...

10.7.1.4. Standard Resource Manager Connection Factory Types

The Bean Provider must use the javax.sql.DataSource resource manager connection factory type for
obtaining JDBC connections, and the jakarta.jms.ConnectionFactory,
jakarta.jms.QueueConnectionFactory, or jakarta.jms.TopicConnectionFactory for obtaining Jakarta
Messaging connections.

The Bean Provider must use the jakarta.mail.Session resource manager connection factory type for
obtaining Jakarta Mail connections, and the java.net.URL resource manager connection factory type
for obtaining URL connections.

It is recommended that the Bean Provider names JDBC data sources in the java:comp/env/jdbc
subcontext, and Jakarta Messaging connection factories in the java:comp/env/jms subcontext. It is also
recommended that the Bean Provider name all Jakarta Mail connection factories in the
java:comp/env/mail subcontext, and all URL connection factories in the java:comp/env/url subcontext.
Note that resource manager connection factory references declared via annotations will not, by
default, appear in any subcontext.

Jakarta® Connectors [16] allows an enterprise bean to use the API described in this section to obtain
resource objects that provide access to additional back-end systems.

10.7.2. Deployer’s Responsibility

The Deployer uses deployment tools to bind the resource manager connection factory references to the
actual resource factories configured in the target operational environment.

10.7. Resource Manager Connection Factory References

228 Jakarta® Enterprise Beans, Core Features Final

The Deployer must perform the following tasks for each resource manager connection factory
reference declared in the metadata annotations or deployment descriptor:

• Bind the resource manager connection factory reference to a resource manager connection factory
that exists in the operational environment. The Deployer may use, for example, the JNDI LinkRef
mechanism to create a symbolic link to the actual JNDI name of the resource manager connection
factory. The resource manager connection factory type must be compatible with the type declared
in the source code or in the res-type element.

• Provide any additional configuration information that the resource manager needs for opening
and managing the resource. The configuration mechanism is resource-manager specific, and is
beyond the scope of this specification.

• If the value of the Resource annotation authenticationType element is AuthenticationType.CONTAINER
or the deployment descriptor res-auth element is Container, the Deployer is responsible for
configuring the sign-on information for the resource manager. This is performed in a manner
specific to the Enterprise Beans container and resource manager; it is beyond the scope of this
specification.

For example, if principals must be mapped from the security domain and principal realm used at the
enterprise beans application level to the security domain and principal realm of the resource manager,
the Deployer or System Administrator must define the mapping. The mapping is performed in a manner
specific to the Enterprise Beans container and resource manager; it is beyond the scope of the current
Enterprise Beans specification.

10.7.3. Container Provider Responsibility

The Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the resource manager connection factory classes for the resource
managers that are configured with the Enterprise Beans container.

• If the Bean Provider sets the authenticationType element of the Resource annotation to
AuthenticationType.APPLICATION or the res-auth deployment descriptor entry for a resource
manager connection factory reference to Application, the container must allow the bean to
perform explicit programmatic sign-on using the resource manager’s API.

• If the Bean Provider sets the shareable element of the Resource annotation to false or sets the res-
sharing-scope deployment descriptor entry for a resource manager connection factory reference to
Unshareable, the container must not attempt to share the connections obtained from the resource
manager connection factory reference.[73] If the Bean Provider sets the res-sharing-scope of a
resource manager connection factory reference to Shareable or does not specify res-sharing-scope ,
the container must share the connections obtained from the resource manager connection factory
according to the requirements defined in [18].

• The container must provide tools that allow the Deployer to set up resource manager sign-on

10.7. Resource Manager Connection Factory References

Final Jakarta® Enterprise Beans, Core Features 229

information for the resource manager references whose annotation element authenticationType is
set to AuthenticationType.CONTAINER or whose res-auth deployment descriptor element element is
set to Container. The minimum requirement is that the Deployer must be able to specify the
user/password information for each resource manager connection factory reference declared by
the enterprise bean, and the container must be able to use the user/password combination for user
authentication when obtaining a connection to the resource by invoking the resource manager
connection factory.

Although not required by the Enterprise Beans specification, we expect that containers will support some
form of a single sign-on mechanism that spans the application server and the resource managers. The
container will allow the Deployer to set up the resource managers such that the Enterprise Beans caller
principal can be propagated (directly or through principal mapping) to a resource manager, if required by
the application.

While not required by the Enterprise Beans specification, most Enterprise Beans Container Providers
also provide the following features:

• A tool to allow the System Administrator to add, remove, and configure a resource manager for the
Enterprise Beans server.

• A mechanism to pool connections to the resources for the enterprise beans and otherwise manage
the use of resources by the container. The pooling must be transparent to the enterprise beans.

10.7.4. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the Enterprise Beans server environment.

In some scenarios, these tasks can be performed by the Deployer.

10.8. Resource Environment References
This section describes the programming and deployment descriptor interfaces that allow the Bean
Provider to refer to administered objects that are associated with resources (e.g., a Jakarta Connectors
CCI InteractionSpec instance) by using "logical" names called resource environment references.
Resource environment references are special entries in the enterprise bean’s environment. The
Deployer binds the resource environment references to administered objects in the target operational
environment.

10.8.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view and responsibilities with respect to resource
environment references.

10.8. Resource Environment References

230 Jakarta® Enterprise Beans, Core Features Final

10.8.1.1. Injection of Resource Environment References

A field or a method of a bean may be annotated with the Resource annotation to request injection of a
resource environment reference. The name and type of the resource environment reference are as
described in Annotations for Environment Entries. The authenticationType and shareable elements of
the Resource annotation must not be specified; resource environment entries are not shareable and do
not require authentication. The use of the Resource annotation to declare a resource environment
reference differs from the use of the Resource annotation to declare simple environment references
only in that the type of a resource environment reference is not one of the Java language types used for
simple environment references.

10.8.1.2. Resource Environment Reference Programming Interfaces

The Bean Provider must use resource environment references to locate administered objects that are
associated with resources, as follows:

• Assign an entry in the enterprise bean’s environment to the reference. (See Declaration of Resource
Environment References in Deployment Descriptor for information on how resource environment
references are declared in the deployment descriptor.)

• The Enterprise Beans specification recommends, but does not require, that all resource
environment references be organized in the appropriate subcontext of the bean’s environment for
the resource type. Note that the resource environment references declared via annotations will not,
by default, appear in any subcontext.

• Look up the administered object in the enterprise bean’s environment using the EJBContext lookup
method or the JNDI API.

10.8.1.3. Declaration of Resource Environment References in Deployment Descriptor

Although the resource environment reference is an entry in the enterprise bean’s environment, the
Bean Provider must not use a env-entry element to declare it. Instead, the Bean Provider must declare
all references to administered objects associated with resources using either annotations in the bean’s
source code or the resource-env-ref elements of the deployment descriptor. This allows the ejb-jar
consumer to discover all the resource environment references used by the enterprise bean.
Deployment descriptor entries may also be used to specify injection of a resource environment
reference into a bean.

See Section "Declaration of Resource Environment References in Deployment Descriptor" in the Jakarta
EE Platform specification [18] for the description of the resource-env-ref element.

See Sharing of Environment Entries for the name scoping rules of resource environment references.

10.8.2. Deployer’s Responsibility

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment references are bound to

10.8. Resource Environment References

Final Jakarta® Enterprise Beans, Core Features 231

administered objects that exist in the operational environment. The Deployer may use, for
example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the
target object.

• The Deployer must ensure that the target object is type-compatible with the type declared for the
resource environment reference. This means that the target object must be of the type indicated in
the Resource annotation or the resource-env-ref-type element.

10.8.3. Container Provider’s Responsibility

The Container Provider must provide the deployment tools that allow the Deployer to perform the
tasks described in the previous subsection. The deployment tools provided by the Container Provider
must be able to process the information supplied in the class file annotations and resource-env-ref
elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved resource
environment references, and allow him or her to resolve a resource environment reference by binding
it to a specified compatible target object in the environment.

10.9. Message Destination References
This section describes the programming and deployment descriptor interfaces that allow the Bean
Provider to refer to message destination objects by using "logical" names called message destination
references. Message destination references are special entries in the enterprise bean’s environment.
The Deployer binds the message destination references to administered message destinations in the
target operational environment.

10.9.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view and responsibilities with respect to message
destination references.

10.9.1.1. Injection of Message Destination References

A field or a method of a bean may be annotated with the Resource annotation to request injection of a
message destination reference. The name and type of the resource environment reference are as
described in Annotations for Environment Entries. The authenticationType and shareable elements of
the Resource annotation must not be specified.

Note that when using the Resource annotation to declare a message destination reference it is not
possible to link the reference to other references to the same message destination, or to specify
whether the destination is used to produce or consume messages. The deployment descriptor entries
described in Declaration of Message Destination References in Deployment Descriptor provide a way to
associate multiple message destination references with a single message destination and to specify
whether each message destination reference is used to produce, consume, or both produce and
consume messsages, so that the entire message flow of an application may be specified. The

10.9. Message Destination References

232 Jakarta® Enterprise Beans, Core Features Final

Application Assembler may use these message destination links to link together message destination
references that have been declared using the Resource annotation. A message destination reference
declared via the Resource annotation is assumed to be used to both produce and consume messages;
this default may be overridden using a deployment descriptor entry.

The following example illustrates how an enterprise bean uses the Resource annotation to request
injection of a message destination reference.

@Resource
jakarta.jms.Queue stockQueue;

10.9.1.2. Message Destination Reference Programming Interfaces

The Bean Provider uses message destination references to locate message destinations, as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See Declaration of Message
Destination References in Deployment Descriptor for information on how message destination
references are declared in the deployment descriptor.)

• The Enterprise Beans specification recommends, but does not require, that all message destination
references be organized in the appropriate subcontext of the bean’s environment for the
messaging resource type (e.g. in the java:comp/env/jms JNDI context for Jakarta Messaging
Destinations). Note that message destination references declared via annotations will not, by
default, appear in any subcontext.

• Look up the destination in the enterprise bean’s environment using the EJBContext lookup method
or the JNDI APIs.

The following example illustrates how an enterprise bean uses a message destination reference to
locate a Jakarta Messaging Destination.

10.9. Message Destination References

Final Jakarta® Enterprise Beans, Core Features 233

@Resource(name="jms/StockQueue", type=jakarta.jms.Queue)
@Stateless
public class StockServiceBean implements StockService {

 @Resource
 SessionContext ctx;

 public void processStockInfo(...) {
 ...
 // Look up the Jakarta Messaging StockQueue in the environment.
 Object result = ctx.lookup("jms/StockQueue");

 // Convert the result to the proper type.
 jakarta.jms.Queue queue = (jakarta.jms.Queue)result;
 }
}

In the example, the Bean Provider of the StockServiceBean enterprise bean has assigned the
environment entry jms/StockQueue as the message destination reference name to refer to a Jakarta
Messaging queue.

If the JNDI APIs were used directly, the example would be as follows.

@Resource(name="jms/StockQueue", type=jakarta.jms.Queue)
@Stateless
public class StockServiceBean implements StockService {

 public void processStockInfo(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the Jakarta Messaging StockQueue in the environment.
 Object result = initCtx.lookup(
 "java:comp/env/jms/StockQueue");

 // Convert the result to the proper type.
 jakarta.jms.Queue queue = (jakarta.jms.Queue)result;
 ...
 }
}

10.9.1.3. Declaration of Message Destination References in Deployment Descriptor

Although the message destination reference is an entry in the enterprise bean’s environment, the Bean

10.9. Message Destination References

234 Jakarta® Enterprise Beans, Core Features Final

Provider must not use a env-entry element to declare it. Instead, the Bean Provider should declare all
references to message destinations using either the Resource annotation in the bean’s code or the the
message-destination-ref elements of the deployment descriptor. This allows the ejb-jar consumer to
discover all the message destination references used by the enterprise bean. Deployment descriptor
entries may also be used to specify injection of a message destination reference into a bean.

Each message-destination-ref element describes the requirements that the referencing enterprise bean
has for the referenced destination. The message-destination-ref element contains optional description,
message-destination-type, and message-destination-usage elements, and the mandatory message-

destination-ref-name element.

The message-destination-ref-name element specifies the message destination reference name: its value
is the environment entry name used in the enterprise bean code. The name of the message destination
reference is relative to the java:comp/env context (e.g., the name should be jms/StockQueue rather than
java:comp/env/jms/StockQueue).

The message-destination-type element specifies the expected type of the referenced destination. For
example, in the case of a Jakarta Messaging Destination, its value might be jakarta.jms.Queue. The
message-destination-type element is optional if an injection target is specified for the message
destination reference; in this case the message-destination-type defaults to the type of the injection
target.

The message-destination-usage element specifies whether messages are consumed from the message
destination, produced for the destination, or both. If the message-destination-usage element is not
specified, messages are assumed to be both consumed and produced.

See Sharing of Environment Entries for the name scoping rules of message destination references.

The following example illustrates the declaration of message destination references in the deployment
descriptor.

10.9. Message Destination References

Final Jakarta® Enterprise Beans, Core Features 235

...
<message-destination-ref>
 <description>
 This is a reference to a Jakarta Messaging queue used in processing Stock info
 </description>
 <message-destination-ref-name>
 jms/StockInfo
 </message-destination-ref-name>
 <message-destination-type>
 jakarta.jms.Queue
 </message-destination-type>
 <message-destination-usage>
 Produces
 </message-destination-usage>
</message-destination-ref>
...

10.9.2. Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common logical destinations
specified in the deployment descriptor, the Application Assembler can specify the flow of messages
within an application. The Application Assembler uses the message-destination element, the message-
destination-link element of the message-destination-ref element, and the message-destination-link
element of the message-driven element to link message destination references to a common logical
destination.

The Application Assembler specifies the link between message consumers and producers as follows:

• The Application Assembler uses the message-destination element to specify a logical message
destination within the application. The message-destination element defines a message-destination-
name , which is used for the purpose of linking.

• The Application Assembler uses the message-destination-link element of the message-destination-
ref element of an enterprise bean that produces messages to link it to the target destination. The
value of the message-destination-link element is the name of the target destination, as defined in
the message-destination-name element of the message-destination element. The message-destination
element can be in any module in the same Jakarta EE application as the referencing component.
The Application Assembler uses the message-destination-usage element of the message-destination-
ref element to indicate that the referencing enterprise bean produces messages to the referenced
destination.

• If the consumer of messages from the common destination is a message-driven bean, the
Application Assembler uses the message-destination-link element of the message-driven element to
reference the logical destination. If the Application Assembler links a message-driven bean to its
source destination, he or she should use the message-destination-type element of the message-
driven element to specify the expected destination type.

10.9. Message Destination References

236 Jakarta® Enterprise Beans, Core Features Final

• If an enterprise bean is otherwise a message consumer, the Application Assembler uses the
message-destination-link element of the message-destination-ref element of the enterprise bean
that consumes messages to link to the common destination. In the latter case, the Application
Assembler uses the message-destination-usage element of the message-destination-ref element to
indicate that the enterprise bean consumes messages from the referenced destination.

• To avoid the need to rename message destinations to have unique names within an entire Jakarta
EE application, the Application Assembler may use the following syntax in the message-destination-
link element of the referencing application component. The Application Assembler specifies the
path name of the ejb-jar file containing the referenced message destination and appends the
message-destination-name of the target destination separated from the path name by #. The path
name is relative to the referencing application component jar file. In this manner, multiple
destinations with the same message-destination-name may be uniquely identified.

• When linking message destinations, the Application Assembler must ensure that the consumers
and producers for the destination require a message destination of the same or compatible type, as
determined by the messaging system.

The following example illustrates the use of message destination linking in the deployment descriptor.

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <message-destination-ref>
 <message-destination-ref-name>
 jms/EmployeeReimbursements
 </message-destination-ref-name>
 <message-destination-type>
 jakarta.jms.Queue
 </message-destination-type>
 <message-destination-usage>
 Produces
 </message-destination-usage>
 <message-destination-link>
 ExpenseProcessingQueue
 </message-destination-link>
 </message-destination-ref>
 </session>
 ...
 <message-driven>
 <ejb-name>ExpenseProcessing</ejb-name>
 <ejb-class>com.wombat.empl.ExpenseProcessingBean</ejb-class>
 <messaging-type>jakarta.jms.MessageListener</messaging-type>

10.9. Message Destination References

Final Jakarta® Enterprise Beans, Core Features 237

 ...
 <message-destination-type>
 jakarta.jms.Queue
 </message-destination-type>
 <message-destination-link>
 ExpenseProcessingQueue
 </message-destination-link>
 ...
 </message-driven>
 ...
</enterprise-beans>
...
<assembly-descriptor>
 ...
 <message-destination>
 <message-destination-name>
 ExpenseProcessingQueue
 </message-destination-name>
 </message-destination>
 ...
</assembly-descriptor>

The Application Assembler uses the message-destination-link element to indicate that the message
destination reference EmployeeReimbursement declared in the EmployeeService enterprise bean is linked
to the ExpenseProcessing message-driven bean by means of the common destination
ExpenseProcessingQueue.

The following example illustrates using the message-destination-link element to indicate an enterprise
bean reference to the ExpenseProcessingQueue that is in the same Jakarta EE application unit but in a
different ejb-jar file.

10.9. Message Destination References

238 Jakarta® Enterprise Beans, Core Features Final

<session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <message-destination-ref>
 <message-destination-ref-name>
 jms/EmployeeReimbursements
 </message-destination-ref-name>
 <message-destination-type>
 jakarta.jms.Queue
 </message-destination-type>
 <message-destination-usage>
 Produces
 </message-destination-usage>
 <message-destination-link>
 finance.jar#ExpenseProcessingQueue
 </message-destination-link>
 </message-destination-ref>
</session>

10.9.3. Deployer’s Responsibility

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared message destination references are bound to
destination objects that exist in the operational environment. The Deployer may use, for example,
the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the target object.

• The Deployer must ensure that the target object is type-compatible with the type declared for the
message destination reference.

• The Deployer must observe the message destination links specified by the Application Assembler.

10.9.4. Container Provider’s Responsibility

The Container Provider must provide the deployment tools that allow the Deployer to perform the
tasks described in the previous subsection. The deployment tools provided by the Container Provider
must be able to process the information supplied in the message-destination-ref and message-
destination-link elements in the deployment descriptor.

The tools must be able to inform the Deployer of the message flow between consumers and producers
sharing common message destinations. The tools must also be able to inform the Deployer of any
unresolved message destination references, and allow him or her to resolve a message destination
reference by binding it to a specified compatible target object in the environment.

10.9. Message Destination References

Final Jakarta® Enterprise Beans, Core Features 239

10.10. Persistence Unit References
This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to the entity manager factory for a persistence unit using a logical name
called a persistence unit reference. Persistence unit references are special entries in the enterprise
bean’s environment. The Deployer binds the persistence unit references to entity manager factories
that are configured in accordance with the persistence.xml specification for the persistence unit, as
described in the Jakarta Persistence specification[3].

10.10.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view of locating the entity manager factory for a
persistence unit and defines his or her responsibilities. The first subsection describes annotations for
injecting references to an entity manager factory for a persistence unit; the second describes the API
for accessing an entity manager factory using a persistence unit reference; and the third describes
syntax for declaring persistence unit references in a deployment descriptor.

10.10.1.1. Injection of Persistence Unit References

A field or a method of an enterprise bean may be annotated with the PersistenceUnit annotation. The
name element specifies the name under which the entity manager factory for the referenced persistence
unit may be located in the JNDI naming context. The optional unitName element specifies the name of
the persistence unit as declared in the persistence.xml file that defines the persistence unit.

The following code example illustrates how an enterprise bean uses annotations to declare persistence
unit references.

@PersistenceUnit
EntityManagerFactory emf;

@PersistenceUnit(unitName="InventoryManagement")
EntityManagerFactory inventoryEMF;

10.10.1.2. Programming Interfaces for Persistence Unit References

The Bean Provider must use persistence unit references to obtain references to entity manager
factories as follows:

• Assign an entry in the enterprise bean’s environment to the persistence unit reference. (See
Declaration of Persistence Unit References in Deployment Descriptor for information on how
persistence unit references are declared in the deployment descriptor.)

• The Enterprise Beans specification recommends, but does not require, that all persistence unit
references be organized in the java:comp/env/persistence subcontexts of the bean’s environment.

• Lookup the entity manager factory for the persistence unit in the enterprise bean’s environment

10.10. Persistence Unit References

240 Jakarta® Enterprise Beans, Core Features Final

using the EJBContext lookup method or using the JNDI API.

The following code sample illustrates obtaining an entity manager factory when the EJBContext lookup
method is used.

@PersistenceUnit(name="persistence/InventoryAppDB")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 @Resource
 SessionContext ctx;

 public void updateInventory(...) {
 ...
 // use context lookup to obtain entity manager factory
 EntityManagerFactory emf = (EntityManagerFactory)
 ctx.lookup("persistence/InventoryAppDB");

 // use factory to obtain application-managed entity manager
 EntityManager em = emf.createEntityManager();
 ...
 }
}

The following code sample illustrates obtaining an entity manager factory when the JNDI APIs are used
directly.

10.10. Persistence Unit References

Final Jakarta® Enterprise Beans, Core Features 241

@PersistenceUnit(name="persistence/InventoryAppDB")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 EJBContext ejbContext;
 ...
 public void updateInventory(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain entity manager factory
 EntityManagerFactory emf = (EntityManagerFactory)
 initCtx.lookup("java:comp/env/persistence/InventoryAppDB");

 // use factory to obtain application-managed entity manager
 EntityManager em = emf.createEntityManager();
 ...
 }
}

10.10.1.3. Declaration of Persistence Unit References in Deployment Descriptor

Although a persistence unit reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence unit
references in the deployment descriptor using the persistence-unit-ref elements. This allows the ejb-
jar consumer (i.e. Application Assembler or Deployer) to discover all the persistence unit references
used by an enterprise bean. Deployment descriptor entries may also be used to specify injection of a
persistence unit reference into a bean.

Each persistence-unit-ref element describes a single entity manager factory reference for the
persistence unit. The persistence-unit-ref element consists of the optional description and
persistence-unit-name elements, and the mandatory persistence-unit-ref-name element.

The persistence-unit-ref-name element contains the name of the environment entry used in the
enterprise bean’s code. The name of the environment entry is relative to the java:comp/env context
(e.g., the name should be persistence/InventoryAppDB rather than
java:comp/env/persistence/InventoryAppDB). The optional persistence-unit-name element is the name of
the persistence unit, as specified in the persistence.xml file for the persistence unit.

The following example is the declaration of a persistence unit reference used by the InventoryManager
enterprise bean illustrated in the previous subsection.

10.10. Persistence Unit References

242 Jakarta® Enterprise Beans, Core Features Final

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management
 application.
 </description>
 <persistence-unit-ref-name>
 persistence/InventoryAppDB
 </persistence-unit-ref-name>
 <persistence-unit-name>
 InventoryManagement
 </persistence-unit-name>
 </persistence-unit-ref>
 ...
 </session>
</enterprise-beans>
...

10.10.2. Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment descriptor to
specify a reference to a persistence unit. The Application Assembler (or Bean Provider) may use the
following syntax in the persistence-unit-name element of the referencing application component to
avoid the need to rename persistence units to have unique names within a Jakarta EE application. The
Application Assembler specifies the path name of the root of the referenced persistence unit and
appends the name of the persistence unit separated from the path name by #. The path name is relative
to the referencing application component jar file. In this manner, multiple persistence units with the
same persistence unit name may be uniquely identified when persistence unit names cannot be
changed.

For example,

10.10. Persistence Unit References

Final Jakarta® Enterprise Beans, Core Features 243

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management
 application.
 </description>
 <persistence-unit-ref-name>
 persistence/InventoryAppDB
 </persistence-unit-ref-name>
 <persistence-unit-name>
 ../lib/inventory.jar#InventoryManagement
 </persistence-unit-name>
 </persistence-unit-ref>
 ...
 </session>
</enterprise-beans>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit name
InventoryManagement declared in the InventoryManagerBean to the persistence unit named
InventoryManagement defined in inventory.jar.

10.10.2.1. Overriding Rules

The following rules apply to how a deployment descriptor entry may override a PersistenceUnit
annotation:

The relevant deployment descriptor entry is located based on the JNDI name used with the annotation
(either defaulted or provided explicitly).

The persistence-unit-name overrides the unitName element of the annotation. The Application
Assembler or Deployer should exercise caution in changing this value, if specified, as doing so is likely
to break the application.

The injection target, if specified, must name exactly the annotated field or property method.

10.10. Persistence Unit References

244 Jakarta® Enterprise Beans, Core Features Final

10.10.3. Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence unit reference to the actual entity manager
factory configured for the persistence in the target operational environment.

The Deployer must perform the following tasks for each persistence unit reference declared in the
metadata annotations or deployment descriptor:

• Bind the persistence unit reference to an entity manager factory configured for the persistence unit
that exists in the operational environment. The Deployer may use, for example, the JNDI LinkRef
mechanism to create a symbolic link to the actual JNDI name of the entity manager factory.

• If the persistence unit name is specified, the Deployer should bind the persistence unit reference to
the entity manager factory for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
managing the persistence unit, as described in [3].

10.10.4. Container Provider Responsibility

The Enterprise Beans Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the entity manager factory classes for the persistence units that are
configured with the Enterprise Beans container. The implementation of the entity manager factory
classes may be provided by the container directly or by the container in conjunction with a third-
party persistence provider, as described in [3].

10.10.5. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the Enterprise Beans server environment.

In some scenarios, these tasks can be performed by the Deployer.

10.11. Persistence Context References
This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to a container-managed entity manager of a specified persistence context
type using a logical name called a persistence context reference. Persistence context references are
special entries in the enterprise bean’s environment. The Deployer binds the persistence context
references to container-managed entity managers for persistence contexts of the specified type and
configured in accordance with their persistence unit, as described in the Jakarta Persistence
specification[3].

10.11. Persistence Context References

Final Jakarta® Enterprise Beans, Core Features 245

10.11.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view of locating container-managed entity managers
and defines his or her responsibilities. The first subsection describes annotations for injecting
references to container-managed entity managers; the second describes the API for accessing
references to container-managed entity managers; and the third describes syntax for declaring these
references in a deployment descriptor.

10.11.1.1. Injection of Persistence Context References

A field or a method of an enterprise bean may be annotated with the PersistenceContext annotation.
The name element specifies the name under which a container-managed entity manager for the
referenced persistence unit may be located in the JNDI naming context. The optional unitName element
specifies the name of the persistence unit as declared in the persistence.xml file that defines the
persistence unit. The optional type element specifies whether a transaction-scoped or extended
persistence context is to be used. If the type is not specified, a transaction-scoped persistence context
will be used. References to container-managed entity managers with extended persistence contexts
can only be injected into stateful session beans. The optional properties element specifies
configuration properties to be passed to the persistence provider when the entity manager is created.

The following code example illustrates how an enterprise bean uses annotations to declare persistence
context references.

@PersistenceContext(type=EXTENDED)
EntityManager em;

10.11.1.2. Programming Interfaces for Persistence Context References

The Bean Provider must use persistence context references to obtain references to a container-
managed entity manager configured for a persistence unit as follows:

• Assign an entry in the enterprise bean’s environment to the persistence context reference. (See
Declaration of Persistence Context References in Deployment Descriptor for information on how
persistence context references are declared in the deployment descriptor.)

• The Enterprise Beans specification recommends, but does not require, that all persistence context
references be organized in the java:comp/env/persistence subcontexts of the bean’s environment.

• Lookup the container-managed entity manager for the persistence unit in the enterprise bean’s
environment using the EJBContext lookup method or using the JNDI API.

The following code sample illustrates obtaining an entity manager for a persistence context when the
EJBContext lookup method is used.

10.11. Persistence Context References

246 Jakarta® Enterprise Beans, Core Features Final

@PersistenceContext(name="persistence/InventoryAppMgr")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 @Resource
 SessionContext ctx;

 public void updateInventory(...) {
 ...
 // use context lookup to obtain container-managed entity manager
 EntityManager em = (EntityManager)
 ctx.lookup("persistence/InventoryAppMgr");
 ...
 }
}

The following code sample illustrates obtaining an entity manager when the JNDI APIs are used
directly.

@PersistenceContext(name="persistence/InventoryAppMgr")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 EJBContext ejbContext;

 public void updateInventory(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain container-managed entity manager
 EntityManager em = (EntityManager)
 initCtx.lookup("java:comp/env/persistence/InventoryAppMgr");
 ...
 }
}

10.11.1.3. Declaration of Persistence Context References in Deployment Descriptor

Although a persistence context reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence
context references in the deployment descriptor using the persistence-context-ref elements. This
allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the persistence

10.11. Persistence Context References

Final Jakarta® Enterprise Beans, Core Features 247

context references used by an enterprise bean. Deployment descriptor entries may also be used to
specify injection of a persistence context reference into a bean.

Each persistence-context-ref element describes a single container-managed entity manager reference.
The persistence-context-ref element consists of the optional description, persistence-unit-name,
persistence-context-type, persistence-context-synchronization, and persistence-property elements,
and the mandatory persistence-context-ref-name element.

The persistence-context-ref-name element contains the name of the environment entry used in the
enterprise bean’s code. The name of the environment entry is relative to the java:comp/env context
(e.g., the name should be persistence/InventoryAppMgr rather than
java:comp/env/persistence/InventoryAppMgr). The persistence-unit-name element is the name of the
persistence unit, as specified in the persistence.xml file for the persistence unit. The persistence-
context-type element specifies whether a transaction-scoped or extended persistence context is to be
used. Its value is either Transaction or Extended. If the persistence context type is not specified, a
transaction-scoped persistence context will be used. The optional persistence-context-synchronization
element specifies whether the persistence context is automatically synchronized with the current
transaction. Its value is either Synchronized or Unsynchronized. If the persistence context
synchronization is not specified, the persistence context will be automatically synchronized. The
optional persistence-property elements specify configuration properties that are passed to the
persistence provider when the entity manager is created.

The following example is the declaration of a persistence context reference used by the
InventoryManager enterprise bean illustrated in the previous subsection.

10.11. Persistence Context References

248 Jakarta® Enterprise Beans, Core Features Final

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-context-ref>
 <description>
 Persistence context for the inventory management
 application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppMgr
 </persistence-context-ref-name>
 <persistence-unit-name>
 InventoryManagement
 </persistence-unit-name>
 </persistence-context-ref>
 ...
 </session>
</enterprise-beans>
...

10.11.2. Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment descriptor to
specify a reference to a persistence unit using the syntax described in Application Assembler’s
Responsibilities. In this manner, multiple persistence units with the same persistence unit name may
be uniquely identified when persistence unit names cannot be changed.

For example,

10.11. Persistence Context References

Final Jakarta® Enterprise Beans, Core Features 249

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-context-ref>
 <description>
 Persistence context for the inventory management
 application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppMgr
 </persistence-context-ref-name>
 <persistence-unit-name>
 ../lib/inventory.jar#InventoryManagement
 </persistence-unit-name>
 </persistence-context-ref>
 ...
 </session>
</enterprise-beans>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit name
InventoryManagement declared in the InventoryManagerBean to the persistence unit named
InventoryManagement defined in inventory.jar.

10.11.2.1. Overriding Rules

The following rules apply to how a deployment descriptor entry may override a PersistenceContext
annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The persistence-unit-name overrides the unitName element of the annotation. The Application
Assembler or Deployer should exercise caution in changing this value, if specified, as doing so is
likely to break the application.

• The persistence-context-type, if specified, overrides the type element of the annotation. In general,
the Application Assembler or Deployer should never change the value of this element, as doing so
is likely to break the application.

• The persistence-context-synchronization, if specified, overrides the synchronization element of the

10.11. Persistence Context References

250 Jakarta® Enterprise Beans, Core Features Final

annotation. In general, the Application Assembler or Deployer should never change the value of
this element, as doing so is likely to break the application.

• Any persistence-property elements are added to those specified by the PersistenceContext

annotation. If the name of a specified property is the same as one specified by the
PersistenceContext annotation, the value specified in the annotation is overridden.

• The injection target, if specified, must name exactly the annotated field or property method.

10.11.3. Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence context reference to the container-managed
entity manager for the persistence context of the specified type and configured for the persistence unit
in the target operational environment.

The Deployer must perform the following tasks for each persistence context reference declared in the
metadata annotations or deployment descriptor:

• Bind the persistence context reference to a container-managed entity manager for a persistence
context of the specified type and configured for the persistence unit as specified in the
persistence.xml file for the persistence unit that exists in the operational environment. The
Deployer may use, for example, the JNDI LinkRef mechanism to create a symbolic link to the actual
JNDI name of the entity manager.

• If the persistence unit name is specified, the Deployer should bind the persistence context
reference to an entity manager for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
creating such an entity manager and for managing the persistence unit, as described in [3].

10.11.4. Container Provider Responsibility

The Enterprise Beans Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the entity manager classes for the persistence units that are
configured with the Enterprise Beans container. This implementation may be provided by the
container directory or by the container in conjunction with a third-party persistence provider, as
described in [3].

10.11.5. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the Enterprise Beans server environment.

In some scenarios, these tasks can be performed by the Deployer.

10.11. Persistence Context References

Final Jakarta® Enterprise Beans, Core Features 251

10.12. UserTransaction Interface
The container must make the UserTransaction interface available to the enterprise beans that are
allowed to use this interface (only session and message-driven beans with bean-managed transaction
demarcation are allowed to use this interface) either through injection using the Resource annotation
or in JNDI under the name java:comp/UserTransaction, in addition to through the EJBContext interface.
The authenticationType and shareable elements of the Resource annotation must not be specified.

The container must not make the UserTransaction interface available to the enterprise beans that are
not allowed to use this interface. The container should throw javax.naming.NameNotFoundException if an
instance of an enterprise bean that is not allowed to use the UserTransaction interface attempts to look
up the interface in JNDI using the JNDI APIs.

The following example illustrates how an enterprise bean acquires and uses a UserTransaction object
via injection.

@Resource
UserTransaction tx;
...
public void updateData(...) {
 ...
 // Start a transaction.
 tx.begin();
 ...
 // Perform transactional operations on data.
 ...
 // Commit the transaction.
 tx.commit();
 ...
}

The following code example

10.12. UserTransaction Interface

252 Jakarta® Enterprise Beans, Core Features Final

public MySessionBean implements SessionBean {
 ...
 public someMethod() {
 ...
 Context initCtx = new InitialContext();
 UserTransaction utx = (UserTransaction)initCtx.lookup(
 "java:comp/UserTransaction");
 utx.begin();
 ...
 utx.commit();
 }
 ...
}

is functionally equivalent to

public MySessionBean implements SessionBean {
 ...
 SessionContext ctx;
 ...
 public someMethod() {
 UserTransaction utx = ctx.getUserTransaction();
 utx.begin();
 ...
 utx.commit();
 }
 ...
}

A UserTransaction object reference may also be declared in a deployment descriptor in the same way as
a resource environment reference. Such a deployment descriptor entry may be used to specify
injection of a UserTransaction object.

10.12.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of a UserTransaction object using a Resource
annotation or for using the defined name to lookup the UserTransaction object.

10.12.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate UserTransaction object as required
by this specification.

10.12. UserTransaction Interface

Final Jakarta® Enterprise Beans, Core Features 253

10.13. ORB References
Enterprise beans that need to make use of the CORBA ORB to perform certain operations can find an
appropriate object implementing the ORB interface by requesting injection of an ORB object or by
looking up the JNDI name java:comp/ORB. Any such reference to an ORB object is only valid within the
bean instance that performed the lookup.

The following example illustrates how an application component acquires and uses an ORB object via
injection.

@Resource
ORB orb;

public void method(...) {
 ...
 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}

The following example illustrates how an enterprise bean acquires and uses an ORB object using a JNDI
lookup.

public void method(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the ORB object.
 ORB orb = (ORB)initCtx.lookup("java:comp/ORB");

 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}

An ORB reference may also be declared in a deployment descriptor in the same way as a resource
manager connection factory reference. Such a deployment descriptor entry may be used to specify
injection of an ORB object.

The ORB instance available under the JNDI name java:comp/ORB may always be a shared instance. By
default, the ORB instance injected into an enterprise bean or declared via a deployment descriptor entry
may also be a shared instance. However, the application may set the shareable element of the Resource
annotation to false, or may set the res-sharing-scope element in the deployment descriptor to

10.13. ORB References

254 Jakarta® Enterprise Beans, Core Features Final

Unshareable, to request a non-shared ORB instance.

10.13.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of the ORB object using the Resource
annotation, or using the defined name to look up the ORB object. If the shareable element of the Resource
annotation is set to false, the ORB object injected will not be the shared instance used by other
components in the application but instead will be a private ORB instance used only by the given
component.

10.13.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate ORB object as required by this
specification.

10.14. TimerService References
The container must make the TimerService interface available either through injection using the
Resource annotation or in JNDI under the name java:comp/TimerService, in addition to through the
EJBContext interface. The authenticationType and shareable elements of the Resource annotation must
not be specified.

A TimerService object reference may also be declared in a deployment descriptor in the same way as a
resource environment reference. Such a deployment descriptor entry may be used to specify injection
of a TimerService object.

10.14.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of a TimerService object using a Resource
annotation, or using the defined name to lookup the TimerService object.

10.14.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate TimerService object as required by
this specification.

10.15. EJBContext References
The container must make a component’s EJBContext interface available either through injection using
the Resource annotation or in JNDI under the name java:comp/EJBContext. The authenticationType and
shareable elements of the Resource annotation must not be specified.

An EJBContext object reference may also be declared in a deployment descriptor in the same way as a
resource environment reference. Such a deployment descriptor entry may be used to specify injection
of an EJBContext object.

10.14. TimerService References

Final Jakarta® Enterprise Beans, Core Features 255

10.15.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of an EJBContext object using a Resource
annotation or using the defined name to lookup the EJBContext object.

EJBContext objects accessed through the naming environment are only valid within the bean instance
that performed the lookup.

10.15.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate EJBContext object to the
referencing component. The object returned must be of the appropriate specific type for the bean
requesting injection or performing the lookup—that is, the Container Provider must return an instance
of the SessionContext interface to referencing session beans and an instance of the
MessageDrivenContext interface to message-driven beans.

Independent of the singleton session bean’s concurrency management type, the Container Provider
must ensure concurrent access to the SessionContext object to be thread-safe.

10.16. Support for Other Resources and Configuration
Parameters
The container must follow the requirements for all other resources and configuration parameters
specified in the Jakarta EE Platform specification [18].

[69] The term "resource" is used generically in this chapter to refer to these other environment entries as resources as
well. Resources in the non-generic sense are described in Resource Manager Connection Factory References.
[70] Component contract and client view of entity beans are described in the Enterprise Beans Optional Features
document[2].
[71] Component contract and client view of entity beans are described in the Enterprise Beans Optional Features
document [2].
[72] The Bean Provider may also use this syntax in the beanName element of the EJB annotation.
[73] Connections obtained from the same resource manager connection factory through a different resource manager
connection factory reference may be shareable.

10.16. Support for Other Resources and Configuration Parameters

256 Jakarta® Enterprise Beans, Core Features Final

Chapter 11. Security Management
This chapter defines the Enterprise Beans architecture’s support for security management.

11.1. Overview
We set the following goals for the security management in the Enterprise Beans architecture:

• Lessen the burden of the application developer (i.e. the Bean Provider) for securing the application by
allowing greater coverage from more qualified Enterprise Beans roles. The Container Provider
provides the implementation of the security infrastructure; the Deployer and System Administrator
define the security policies.

• Allow the security policies to be set by the Application Assembler or Deployer.

• Allow the enterprise bean applications to be portable across multiple Enterprise Beans servers that
use different security mechanisms.

The Enterprise Beans architecture encourages the Bean Provider to implement the enterprise bean
class without hard-coding the security policies and mechanisms into the business methods. In most
cases, the enterprise bean’s business methods should not contain any security-related logic. This allows
the Deployer to configure the security policies for the application in a way that is most appropriate for
the operational environment of the enterprise.

To make the Deployer’s task easier, the Bean Provider or the Application Assembler (which could be
the same party as the Bean Provider) may define security roles for an application composed of one or
more enterprise beans. A security role is a semantic grouping of permissions that a given type of users
of the application must have in order to successfully use the application. The Bean Provider can define
declaratively using metadata annotations or the deployment descriptor the method permissions for
each security role. The Applications Assembler can define, augment, or override the method
permissions using the deployment descriptor. A method permission is a permission to invoke a
specified group of methods of an enterprise bean’s business interface, no-interface view, home
interface, component interface, and/or web service endpoint. The security roles defined by the Bean
Provider or the Application Assembler present a simplified security view of the enterprise beans
application to the Deployer—the Deployer’s view of the application’s security requirements is the small
set of security roles rather than a large number of individual methods.

The security principal under which a method invocation is performed is typically that of the
component’s caller. By specifying a run-as identity, however, it is possible to specify that a different
principal be substituted for the execution of the methods of the bean’s business interface, no-interface
view, home interface, component interface, and/or web service endpoint and any methods of other
enterprise beans that the bean may call.

This determines whether the caller principal is propagated from the caller to the callee—that is,
whether the called enterprise bean will see the same returned value of the
EJBContext.getCallerPrincipal as the calling enterprise bean—or whether a security principal that has

11.1. Overview

Final Jakarta® Enterprise Beans, Core Features 257

been assigned to the specified security role will be used for the execution of the bean’s methods and
will be visible as the caller principal in the bean’s callee.

The Bean Provider can use metadata annotations or the deployment descriptor to specify whether the
caller’s security identity or a run-as security identity should be used for the execution of the bean’s
methods.

• By default, the caller principal will be propagated as the caller identity. The Bean Provider can use
the RunAs annotation to specify that a security principal that has been assigned to a specified
security role be used instead. See Specification of Security Identities in the Deployment Descriptor.

• If the deployment descriptor is used to specify the security principal, the Bean Provider or the
Application Assembler can use the security-identity deployment descriptor element to specify the
security identity. If the security-identity deployment descriptor element is not specified and if a
run-as identity has not been specified by the use of the RunAs annotation or if use-caller-identity is
specified as the value of the security-identity element, the caller principal is propagated from the
caller to the callee. If the run-as element is specified, a security principal that has been assigned to
the specified security role will be used. The Application Assembler is permitted to override a
security identity value set or defaulted by the Bean Provider.

The Deployer is responsible for assigning principals, or groups of principals, which are defined in the
target operational environment, to the security roles defined by the Bean Provider or Application
Assembler. The Deployer is also responsible for assigning principals for the run-as identities specified.
The Deployer is further responsible for configuring other aspects of the security management of the
enterprise beans, such as principal mapping for inter-enterprise bean calls, and principal mapping for
resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with
the client call has been assigned by the Deployer to have at least one security role that is allowed to
invoke the business method or if the Bean Provider or Application Assembler has specified that
security authorization is not to be checked for the method (i.e., that all roles, including any
unauthenticated roles, are permitted). See Method Permissions.

The Container Provider is responsible for enforcing the security policies at runtime, providing the tools
for managing security at runtime, and providing the tools used by the Deployer to manage security
during deployment.

Because not all security policies can be expressed declaratively, the Enterprise Beans architecture
provides a simple programmatic interface that the Bean Provider may use to access the security
context from the business methods.

The following sections define the responsibilities of the individual Enterprise Beans roles with respect
to security management.

11.1. Overview

258 Jakarta® Enterprise Beans, Core Features Final

11.2. Bean Provider’s Responsibilities
This section defines the Bean Provider’s perspective of the Enterprise Beans architecture support for
security, and defines his or her responsibilities. In addition, the Bean Provider may define the security
roles for the application, as defined in Responsibilities of the Bean Provider and/or Application
Assembler.

11.2.1. Invocation of Other Enterprise Beans

An enterprise bean business method can invoke another enterprise bean via the other bean’s business
interface, no-interface view, or home or component interface. The Enterprise Beans architecture
provides no programmatic interfaces for the invoking enterprise bean to control the principal passed
to the invoked enterprise bean.

The management of caller principals passed on inter-enterprise bean invocations (i.e. principal
delegation) is set up by the Deployer and System Administrator in a container-specific way. The Bean
Provider and Application Assembler should describe all the requirements for the caller’s principal
management of inter-enterprise bean invocations as part of the description.

11.2.2. Resource Access

Resource Manager Connection Factory References defines the protocol for accessing resource
managers, including the requirements for security management.

11.2.3. Access of Underlying OS Resources

The Enterprise Beans architecture does not define the operating system principal under which
enterprise bean methods execute. Therefore, the Bean Provider cannot rely on a specific principal for
accessing the underlying OS resources, such as files. (See System Principal for the reasons behind this
rule.)

We believe that most enterprise business applications store information in resource managers such as
relational databases rather than in resources at the operating system levels. Therefore, this rule should
not affect the portability of most enterprise beans.

11.2.4. Programming Style Recommendations

The Bean Provider should neither implement security mechanisms nor hard-code security policies in
the enterprise beans’ business methods. Rather, the Bean Provider should rely on the security
mechanisms provided by the Enterprise Beans container.

The Bean Provider can use metadata annotations and/or the deployment descriptor to convey security-
related information to the Deployer. The information helps the Deployer to set up the appropriate
security policy for the enterprise bean application.

11.2. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 259

11.2.5. Programmatic Access to Caller’s Security Context

Note: In general, security management should be enforced by the container in a manner that is
transparent to the enterprise beans’ business methods. The security API described in this section should
be used only in the less frequent situations in which the enterprise bean business methods need to access
the security context information.

The jakarta.ejb.EJBContext interface provides two methods that allow the Bean Provider to access
security information about the enterprise bean’s caller.

public interface jakarta.ejb.EJBContext {
 ...
 //
 // The following two methods allow the Enterprise Beans class
 // to access security information.
 //
 java.security.Principal getCallerPrincipal();
 boolean isCallerInRole(String roleName);
}

The Bean Provider can invoke the getCallerPrincipal and isCallerInRole methods only in the
enterprise bean’s business methods as specified in Operations Allowed in the Methods of a Stateful
Session Bean, Operations Allowed in the Methods of a Stateless Session Bean, Operations Allowed in
the Methods of a Message-Driven Bean, Operations Allowed in the Methods of Entity Class in
Container-Managed Persistence, and Operations Allowed in the Methods of Entity Class in Bean-
Managed Persistence. If they are otherwise invoked when no security context exists, they should throw
the java.lang.IllegalStateException runtime exception.

11.2.5.1. Use of getCallerPrincipal

The purpose of the getCallerPrincipal method is to allow the enterprise bean methods to obtain the
current caller principal’s name. The methods might, for example, use the name as a key to information in
a database.

An enterprise bean can invoke the getCallerPrincipal method to obtain a java.security.Principal
interface representing the current caller. The enterprise bean can then obtain the distinguished name
of the caller principal using the getName method of the java.security.Principal interface. If the security
identity has not been established, getCallerPrincipal returns the container’s representation of the
unauthenticated identity.

Note that getCallerPrincipal returns the principal that represents the caller of the enterprise bean,
not the principal that corresponds to the run-as security identity for the bean, if any.

The meaning of the current caller, the Java class that implements the java.security.Principal

11.2. Bean Provider’s Responsibilities

260 Jakarta® Enterprise Beans, Core Features Final

./enterprise-beans-spec-opt-4.0.pdf#a1367
./enterprise-beans-spec-opt-4.0.pdf#a1367
./enterprise-beans-spec-opt-4.0.pdf#a2625
./enterprise-beans-spec-opt-4.0.pdf#a2625

interface, and the realm of the principals returned by the getCallerPrincipal method depend on the
operational environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains. The
security infrastructure may perform one or more mapping of principals on the path from an Enterprise
Beans caller to the Enterprise Beans object. For example, an employee accessing his or her company over
the Internet may be identified by a userid and password (basic authentication), and the security
infrastructure may authenticate the principal and then map the principal to a Kerberos principal that is
used on the enterprise’s intranet before delivering the method invocation to the Enterprise Beans object. If
the security infrastructure performs principal mapping, the getCallerPrincipal method returns the
principal that is the result of the mapping, not the original caller principal. (In the previous example,
getCallerPrincipal would return the Kerberos principal.) The management of the security infrastructure,
such as principal mapping, is performed by the System Administrator role; it is beyond the scope of the
Enterprise Beans specification.

The following code sample illustrates the use of the getCallerPrincipal() method.

@Stateless
public class EmployeeServiceBean implements EmployeeService {

 @Resource
 SessionContext ctx;

 @PersistenceContext
 EntityManager em;

 public void changePhoneNumber(...) {
 ...
 // obtain the caller principal.
 callerPrincipal = ctx.getCallerPrincipal();

 // obtain the caller principal’s name.
 callerKey = callerPrincipal.getName();

 // use callerKey as primary key to find EmployeeRecord
 EmployeeRecord myEmployeeRecord =
 em.find(EmployeeRecord.class, callerKey);

 // update phone number
 myEmployeeRecord.setPhoneNumber(...);
 ...
 }
}

In the previous example, the enterprise bean obtains the principal name of the current caller and uses
it as the primary key to locate an EmployeeRecord entity. This example assumes that application has

11.2. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 261

been deployed such that the current caller principal contains the primary key used for the
identification of employees (e.g., employee number).

11.2.5.2. Use of isCallerInRole

The main purpose of the isCallerInRole(String roleName) method is to allow the Bean Provider to code
the security checks that cannot be easily defined declaratively in the deployment descriptor using method
permissions. Such a check might impose a role-based limit on a request, or it might depend on
information stored in the database.

The enterprise bean code can use the isCallerInRole method to test whether the current caller has
been assigned to a given security role. Security roles are defined by the Container, Bean Provider or
the Application Assembler (see Security Roles), and are assigned to principals or principal groups that
exist in the operational environment by the Deployer.

The enterprise bean code can also use the isCallerInRole method to test whether the current caller has
been authenticated; and without further consideration of whether the authenticated caller has been
assigned to one or more specific security roles. To perform this test, the code passes the value "**" as
the argument to the isCallerInRole method. As is the case with all calls to the isCallerInRole method,
the run-time return value of the call will depend on the security role linked to the reference (as defined
in Linking Security Role References to Security Roles) and on the principal-to-role mapping configured
for the linked role (as defined in Assignment of Security Roles).

Note that isCallerInRole(String roleName) tests the principal that represents the caller of the
enterprise bean, not the principal that corresponds to the run-as security identity for the bean, if
any.

The following code sample illustrates the use of the isCallerInRole(String roleName) method.

11.2. Bean Provider’s Responsibilities

262 Jakarta® Enterprise Beans, Core Features Final

@Stateless
public class PayrollBean implements Payroll {

 @Resource
 SessionContext ctx;

 public void updateEmployeeInfo(EmplInfo info) {

 oldInfo = ... read from database;

 // The salary field can be changed only by callers
 // who have the security role "payroll"
 if (info.salary != oldInfo.salary &&
 !ctx.isCallerInRole("payroll")) {
 throw new SecurityException(...);
 }
 ...
 }
 ...
}

11.2.5.3. Declaration of Security Roles Referenced from the Bean’s Code

The Bean Provider is responsible for declaring all names that may be used to reference security roles
from the enterprise bean code. The names of security roles defined in the deployment descriptor or
used in the RolesAllowed annotation are implicitly declared. The Bean Provider is responsible for using
either the DeclareRoles annotation or the security-role-ref elements of the deployment descriptor to
declare all such names that are not implicitly declared.

The DeclareRoles annotation is specified on a bean class, where it serves to declare the names of
(otherwise undeclared) roles that may be tested by calling isCallerInRole from within the methods of
the annotated class. Declaring the security roles allows the Bean Provider, Application Assembler, or
Deployer to link security role names used in the code to the security roles defined for an assembled
application. In the absence of this linking step, any security role name as used in the code will be
assumed to correspond to a security role of the same name.

When the Bean Provider uses the DeclareRoles annotation to declare the name of a role used as a
parameter to the isCallerInRole(String roleName) method, the declared name must be the same as the
parameter value. The Bean Provider may optionally provide a description of the named security roles
in the description element of the DeclareRoles annotation.

In the following example, the DeclareRoles annotation is used to indicate that the enterprise bean
AardvarkPayroll makes the security check using isCallerInRole("payroll") in its business method.

11.2. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 263

@DeclareRoles("payroll")
@Stateless
public class PayrollBean implements Payroll {

 @Resource
 SessionContext ctx;

 public void updateEmployeeInfo(EmplInfo info) {

 oldInfo = ... read from database;
 // The salary field can be changed only by callers
 // who have the security role "payroll"
 if (info.salary != oldInfo.salary &&
 !ctx.isCallerInRole("payroll")) {
 throw new SecurityException(...);
 }
 ...
 }
 ...
}

The Bean Provider must use the security-role-ref elements of the deployment descriptor to declare
any security roles referenced in the code and not otherwise declared. The security-role-ref elements
are defined as follows:

• Declare the name of the security role using the role-name element. The name must be the security
role name that is used as a parameter to the isCallerInRole(String roleName) method.

• Optionally provide a description of the security role in the description element.

The following example illustrates how an enterprise bean’s references to security roles are declared in
the deployment descriptor.

11.2. Bean Provider’s Responsibilities

264 Jakarta® Enterprise Beans, Core Features Final

 ...
 <enterprise-beans>
 ...
 <session>
 <ejb-name>AardvarkPayroll</ejb-name>
 <ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
 ...
 <security-role-ref>
 <description>
 This security role should be assigned to the
 employees of the payroll department who are
 allowed to update employees’ salaries.
 </description>
 <role-name>payroll</role-name>
 </security-role-ref>
 ...
 </session>
 ...
 </enterprise-beans>
 ...

The deployment descriptor above indicates that the enterprise bean AardvarkPayroll makes the
security check using isCallerInRole("payroll") in its business method.

A security role reference, including the name defined by the reference, is scoped to the component
whose bean class contains the DeclareRoles metadata annotation or whose deployment descriptor
element contains the security-role-ref deployment descriptor element.

The Bean Provider (or Application Assembler) may also use the security-role-ref elements for those
references that were declared in annotations and which the Bean Provider wishes to have linked to a
security-role whose name differs from the reference value. If a security role reference is not linked to
a security role in this way, the container must map the reference name to the security role of the same
name. See Linking Security Role References to Security Roles for a description of how security role
references are linked to security roles.

11.3. Responsibilities of the Bean Provider and/or
Application Assembler
The Bean Provider and Application Assembler (which could be the same party as the Bean Provider)
may define a security view of the enterprise beans contained in the ejb-jar file. Providing the security
view is optional for the Bean Provider and Application Assembler.

The main reason for providing the security view of the enterprise beans is to simplify the Deployer’s job.
In the absence of a security view of an application, the Deployer needs detailed knowledge of the

11.3. Responsibilities of the Bean Provider and/or Application Assembler

Final Jakarta® Enterprise Beans, Core Features 265

application in order to deploy the application securely. For example, the Deployer would have to know
what each business method does to determine which users can call it. The security view defined by the
Bean Provider or Application Assembler presents a more consolidated view to the Deployer, allowing the
Deployer to be less familiar with the application.

The security view consists of a set of security roles. A security role is a semantic grouping of
permissions that a given type of users of an application must have in order to successfully use the
application.

The Bean Provider or Application Assembler defines method permissions for each security role. A
method permission is a permission to invoke a specified group of methods of the enterprise beans’
business interface, no-interface view, home interface, component interface, and/or web service
endpoint.

It is important to keep in mind that the security roles are used to define the logical security view of an
application. They should not be confused with the user groups, users, principals, and other concepts that
exist in the target enterprise’s operational environment.

In special cases, a qualified Deployer may change the definition of the security roles for an application, or
completely ignore them and secure the application using a different mechanism that is specific to the
operational environment.

11.3.1. Security Roles

The Bean Provider or Application Assembler can define one or more security roles in the bean’s
metadata annotations or deployment descriptor. The Bean Provider or Application Assembler then
assigns groups of methods of the enterprise beans’ business, home, and component interfaces, no-
interface view, and/or web service endpoints to the security roles to define the security view of the
application.

Because the Bean Provider and Application Assembler do not, in general, know the security
environment of the operational environment, the security roles are meant to be logical roles (or
actors), each representing a type of user that should have the same access rights to the application.

The Deployer then assigns user groups and/or user accounts defined in the operational environment to
the security roles defined by the Bean Provider and Application Assembler.

A security role with the name "**" is defined by the Container, and is intended to be used by the Bean
Provider, Application Assembler, or Deployer to indicate that the caller must log on or authenticate to
invoke a method or to perform some processing requiring membership in this container role. This
container security role indicates that authentication, without consideration of role membership, is
required. An application role should not be defined with the same name as this container security role,
and a security role reference should not be used to link this role reference to a different role. Moreover
the assignment of principals to the container role with this name should not be subject to
reconfiguration that would remove any authenticated user from membership in the container role.
That said, when an application defines a security role in its deployment descriptor with the name "**",

11.3. Responsibilities of the Bean Provider and/or Application Assembler

266 Jakarta® Enterprise Beans, Core Features Final

this application role is applied wherever the application or its deployment descriptor refers to a role
named "**".

Defining the security roles in the metadata annotations and/or deployment descriptor is optional.[74]

Their omission means that the Bean Provider and Application Assembler chose not to pass any security
deployment related instructions to the Deployer.

If Java language metadata annotations are used, the Bean Provider uses the DeclareRoles and
RolesAllowed annotations to define the security roles. The set of security roles used by the application is
taken to be the aggregation of the security roles defined by the security role names used in the
DeclareRoles and RolesAllowed annotations. The Bean Provider may augment the set of security roles
defined for the application by annotations in this way by means of the security-role deployment
descriptor element.

If the deployment descriptor is used, the Bean Provider and/or Application Assembler uses the
security-role deployment descriptor element as follows:

• Define each security role using a security-role element. An application security role with name
"**" should not be defined as the Container must provide a container security role with this name.

• Use the role-name element to define the name of the security role.

• Optionally, use the description element to provide a description of a security role.

The following example illustrates security roles definition in a deployment descriptor.

11.3. Responsibilities of the Bean Provider and/or Application Assembler

Final Jakarta® Enterprise Beans, Core Features 267

...
<assembly-descriptor>
 <security-role>
 <description>
 This role includes the employees of the
 enterprise who are allowed to access the
 employee self-service application. This role
 is allowed only to access his/her own
 information.
 </description>
 <role-name>employee</role-name>
 </security-role>
 <security-role>
 <description>
 This role includes the employees of the human
 resources department. The role is allowed to
 view and update all employee records.
 </description>
 <role-name>hr-department</role-name>
 </security-role>
 <security-role>
 <description>
 This role includes the employees of the payroll
 department. The role is allowed to view and
 update the payroll entry for any employee.
 </description>
 <role-name>payroll-department</role-name>
 </security-role>
 <security-role>
 <description>
 This role should be assigned to the personnel
 authorized to perform administrative functions
 for the employee self-service application.
 This role does not have direct access to
 sensitive employee and payroll information.
 </description>
 <role-name>admin</role-name>
 </security-role>
 ...
</assembly-descriptor>

11.3.2. Method Permissions

If the Bean Provider and/or Application Assembler have defined security roles for the enterprise beans
in the ejb-jar file, they can also specify the methods of the business, home, and component interfaces,
no-interface views, and/or web service endpoints that each security role is allowed to invoke.

11.3. Responsibilities of the Bean Provider and/or Application Assembler

268 Jakarta® Enterprise Beans, Core Features Final

Metadata annotations and/or the deployment descriptor can be used for this purpose.

Method permissions are defined as a binary relation from the set of security roles to the set of methods
of the business interfaces, home interfaces, component interfaces, no-interface views, and/or web
service endpoints of session and entity [75] beans, including all their superinterfaces (including the
methods of the EJBHome and EJBObject interfaces and/or EJBLocalHome and EJBLocalObject interfaces).
The method permissions relation includes the pair (R, M) if and only if the security role R is allowed to
invoke the method M.

11.3.2.1. Specification of Method Permissions with Metadata Annotations

The following is the description of the rules for the specification of method permissions using Java
language metadata annotations.

The method permissions for the methods of a bean class may be specified on the class, the business
methods of the class, or both.

The RolesAllowed, PermitAll, and DenyAll annotations are used to specify method permissions. The
value of the RolesAllowed annotation is a list of security role names to be mapped to the security roles
that are permitted to execute the specified method(s). The PermitAll annotation specifies that all
security roles, including any unauthenticated roles, are permitted to execute the specified method(s).
The DenyAll annotation specifies that no security roles, including any unauthenticated roles, are
permitted to execute the specified method(s).

Specifying the RolesAllowed or PermitAll or DenyAll annotation on the bean class means that it applies
to all applicable business methods of the class.

Method permissions may be specified on a method of the bean class to override the method
permissions value specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

• A method permissions value specified on a superclass S applies to the business methods defined by
S .

• A method permissions value may be specified on a business method M defined by class S to
override for method M the method permissions value explicitly or implicitly specified on the class
S.

• If a method M of class S overrides a business method defined by a superclass of S, the method
permissions value of M is determined by the above rules as applied to class S.

Example:

11.3. Responsibilities of the Bean Provider and/or Application Assembler

Final Jakarta® Enterprise Beans, Core Features 269

@RolesAllowed("admin")
public class SomeClass {
 public void aMethod () {...}
 public void bMethod () {...}
 ...
}

@Stateless
public class MyBean extends SomeClass implements A {
 @RolesAllowed("HR")
 public void aMethod () {...}

 public void cMethod () {...}
 ...
}

Assuming aMethod, bMethod, cMethod are methods of business interface A, the method permissions values
of methods aMethod and bMethod are RolesAllowed("HR") and RolesAllowed("admin") respectively. The
method permissions for method cMethod have not been specified (see Specification of Method
Permissions in the Deployment Descriptor and Unspecified Method Permissions).

11.3.2.2. Specification of Method Permissions in the Deployment Descriptor

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to
specify the method permissions (or as a means to supplement or override metadata annotations for
method permission values). The Application Assembler is permitted to override the method permission
values using the bean’s deployment descriptor.

Any values explicitly specified in the deployment descriptor override any values specified in
annotations. If a value for a method has not be specified in the deployment descriptor, and a value has
been specified for that method by means of the use of annotations, the value specified in annotations
will apply. The granularity of overriding is on the per-method basis.

The Bean Provider or Application Assembler defines the method permissions relation in the
deployment descriptor using the method-permission elements as follows.

• Each method-permission element includes a list of one or more security roles and a list of one or
more methods. All the listed security roles are allowed to invoke all the listed methods. Each
security role in the list is identified by the role-name element, and each method (or a set of methods,
as described below) is identified by the method element. An optional description can be associated
with a method-permission element using the description element.

• If the role name "**" is included in the list of allowed roles, and the application has not defined in
its deployment descriptor an application security role with this name, then the list of allowed roles
includes every and any authenticated user.

• The method permissions relation is defined as the union of all the method permissions defined in

11.3. Responsibilities of the Bean Provider and/or Application Assembler

270 Jakarta® Enterprise Beans, Core Features Final

the individual method-permission elements.

• A security role or a method may appear in multiple method-permission elements.

The Bean Provider or Application Assembler can indicate that all roles, including any unauthenticated
roles, are permitted to execute one or more specified methods (i.e., the methods should not be
“checked” for authorization prior to invocation by the container). The unchecked element is used
instead of a role name in the method-permission element to indicate that all roles, including any
unauthenticated roles, are permitted.

If the method permission relation specifies both the unchecked element for a given method and one or
more security roles, all roles are permitted for the specified methods.

The exclude-list element can be used to indicate the set of methods that should not be called. The
Deployer should configure the enterprise bean’s security such that no access is permitted to any
method contained in the exclude-list.

If a given method is specified both in the exclude-list element and in the method permission relation,
the Deployer should configure the enterprise bean’s security such that no access is permitted to the
method.

The method element uses the ejb-name, method-name, and method-params elements to denote one or more
methods of an enterprise bean’s business interface, home interface, component interface, no-interface
view, and/or web service endpoint. There are three legal styles for composing the method element:

Style 1:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
</method>

This style is used for referring to all of the methods of the business, home, and component interfaces,
no-interface view, and web service endpoint of a specified enterprise bean.

Style 2:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
</method>

This style is used for referring to a specified method of the business, home, or component interface, no-
interface view, or web service endpoint of the specified enterprise bean. If there are multiple methods
with the same overloaded name, this style refers to all of the overloaded methods.

11.3. Responsibilities of the Bean Provider and/or Application Assembler

Final Jakarta® Enterprise Beans, Core Features 271

Style 3:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAMETER_1</method-param>
 ...
 <method-param>PARAMETER_N</method-param>
 </method-params>
</method>

This style is used to refer to a specified method within a set of methods with an overloaded name. The
method must be defined in the specified enterprise bean’s business, home, or component interface, no-
interface view, or web service endpoint. If there are multiple methods with the same overloaded name,
however, this style refers to all of the overloaded methods.

The optional method-intf element can be used to differentiate between methods with the same name
and signature that are multiply defined across the business, component, or home interfaces, no-
interface view, and/or web service endpoint. If the same method is a method of a local business
interface, local component interface, or no-interface view, the same method permission values apply to
the method for all of them. Likewise, if the same method is a method of both the remote business
interface and remote component interface, the same method permission values apply to the method
for both interfaces.

The following example illustrates how security roles are assigned method permissions in the
deployment descriptor:

...
<method-permission>
 <role-name>employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>
<method-permission>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>

11.3. Responsibilities of the Bean Provider and/or Application Assembler

272 Jakarta® Enterprise Beans, Core Features Final

 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 </method>
</method-permission>
<method-permission>
 <role-name>payroll-department</role-name>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>updateSalary</method-name>
 </method>
</method-permission>
<method-permission>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>
 ...

11.3.2.3. Unspecified Method Permissions

It is possible that some methods are not assigned to any security roles nor annotated as DenyAll or
contained in the exclude-list element. In this case, the Deployer should assign method permissions for
all of the unspecified methods, either by assigning them to security roles, or by marking them as
unchecked. If the Deployer does not assigned method permissions to the unspecified methods, those
methods must be treated by the container as unchecked.

11.3.3. Linking Security Role References to Security Roles

The application’s references to security roles are linked to the security roles defined for the
application. In the absence of any explicit linking, a security role reference will be linked to a security
role having the same name. This requirement also applies to role references with value "**", and an

11.3. Responsibilities of the Bean Provider and/or Application Assembler

Final Jakarta® Enterprise Beans, Core Features 273

explicit mapping should only be defined for a role reference with value "**" when the reference needs
to be linked to an application role with name other than "**".

The Application Assembler uses a security-role-ref element to explicitly link a role reference by a
component to a security role defined by annotation and/or by security-role element (as described in
Security Roles). The linkage is made explicit using the role-link element of the security-role-ref
element; in which case the value of the role-link element must be the name of one of the security roles
defined by annotation and/or security-role element.

A security-role-ref element need not be defined for a role reference that is to be mapped to a
security-role with the same name as the role reference, and when a role-link is not specified within a
security-role-ref, the reference is implicitly mapped to the security role with the same name as the
reference.

The following deployment descriptor example shows how to link the security role reference named
payroll to the security role named payroll-department.

...
<enterprise-beans>
 ...
 <session>
 <ejb-name>AardvarkPayroll</ejb-name>
 <ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
 ...
 <security-role-ref>
 <description>
 This role should be assigned to the
 employees of the payroll department.
 Members of this role have access to
 anyone’s payroll record.
 The role has been linked to the
 payroll-department role.
 </description>
 <role-name>payroll</role-name>
 <role-link>payroll-department</role-link>
 </security-role-ref>
 ...
 </session>
 ...
</enterprise-beans>
...

11.3.4. Specification of Security Identities in the Deployment Descriptor

The Bean Provider or Application Assembler typically specifies whether the caller’s security identity
should be used for the execution of the methods of an enterprise bean or whether a specific run-as

11.3. Responsibilities of the Bean Provider and/or Application Assembler

274 Jakarta® Enterprise Beans, Core Features Final

identity should be used.

By default the caller’s security identity is used. The Bean Provider can use the RunAs metadata
annotation to specify a run-as identity for the execution of the bean’s methods. If the deployment
descriptor is used, the Bean Provider or the Application Assembler can use the security-identity
deployment descriptor element for this purpose or to override a security identity specified in
metadata. The value of the security-identity element is either use-caller-identity or run-as.

Defining the security identities in the deployment descriptor is optional for the Application Assembler.
Their omission in the deployment descriptor means that the Application Assembler chose not to pass
any instructions related to security identities to the Deployer in the deployment descriptor.

If a run-as security identity is not specified by the Deployer, the container should use the caller’s
security identity for the execution of the bean’s methods.

11.3.4.1. Run-as

The Bean Provider can use the RunAs metadata annotation or the Bean Provider or Application
Assembler can use the run-as deployment descriptor element to define a run-as identity for an
enterprise bean in the deployment descriptor. The run-as identity applies to the enterprise bean as a
whole, that is, to all methods of the enterprise bean’s business, home, and component interfaces, no-
interface view, and/or web service endpoint; to the message listener methods of a message-driven
bean; and to the timeout callback methods of an enterprise bean; and all internal methods of the bean
that they might in turn call.

Establishing a run-as identity for an enterprise bean does not affect the identities of its callers, which are
the identities tested for permission to access the methods of the enterprise bean. The run-as identity
establishes the identity the enterprise bean will use when it makes calls.

Because the Bean Provider and Application Assembler do not, in general, know the security
environment of the operational environment, the run-as identity is designated by a logical role-name,
which corresponds to one of the security roles defined by the Bean Provider or Application Assembler
in the metadata annotations or deployment descriptor.

The Deployer then assigns a security principal defined in the operational environment to be used as
the principal for the run-as identity. The security principal assigned by the Deployer should be a
principal that has been assigned to the security role specified by RunAs annotation or by the role-name
element of the run-as deployment descriptor element.

The Bean Provider and/or Application Assembler is responsible for the following in the specification of
run-as identities:

• Use the RunAs metadata annotation or role-name element of the run-as deployment descriptor
element to define the name of the security role.

• Optionally, use the description element to provide a description of the principal that is expected to
be bound to the run-as identity in terms of its security role.

11.3. Responsibilities of the Bean Provider and/or Application Assembler

Final Jakarta® Enterprise Beans, Core Features 275

The following example illustrates the definition of a run-as identity using metadata annotations.

@RunAs("admin")
@Stateless
public class EmployeeServiceBean implements EmployeeService {
 ...
}

Using the deployment descriptor, this can be specified as follows.

...
<enterprise-beans>
 ...
 <session>
 <ejb-name>EmployeeService</ejb-name>
 ...
 <security-identity>
 <run-as>
 <role-name>admin</role-name>
 </run-as>
 </security-identity>
 ...
 </session>
 ...
</enterprise-beans>
...

11.4. Deployer’s Responsibilities
The Deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. This section defines the Deployer’s responsibility with
respect to Enterprise Beans security management.

The Deployer uses deployment tools provided by the Container Provider to read the security view of
the application supplied by the Bean Provider and/or Application Assembler in the metadata
annotations and/or deployment descriptor. The Deployer’s job is to map the security view that was
specified by the Bean Provider and/or Application Assembler to the mechanisms and policies used by
the security domain in the target operational environment. The output of the Deployer’s work includes
an application security policy descriptor that is specific to the operational environment. The format of
this descriptor and the information stored in the descriptor are specific to the Enterprise Beans
container.

The following subsections describe the security related tasks performed by the Deployer.

11.4. Deployer’s Responsibilities

276 Jakarta® Enterprise Beans, Core Features Final

11.4.1. Security Domain and Principal Realm Assignment

The Deployer is responsible for assigning the security domain and principal realm to an enterprise
bean application.

Multiple principal realms within the same security domain may exist, for example, to separate the realms
of employees, trading partners, and customers. Multiple security domains may exist, for example, in
application hosting scenarios.

11.4.2. Assignment of Security Roles

The Deployer assigns principals and/or groups of principals (such as individual users or user groups)
used for managing security in the operational environment to the security roles defined by means of
the DeclareRoles and RolesAllowed metadata annotations and/or security-role elements of the
deployment descriptor.

The Deployer does not define (or in effect redefine) the principals assigned to the container security
role with name "**". The Container is required to assign a principal of any and every authenticated
user (as defined by the operational environment of the application) to the container security role with
this name.

The Deployer does not assign principals and/or principal groups to the security role references—the
principals and/or principals groups assigned to a security role apply also to all the linked security role
references. For example, the Deployer of the AardvarkPayroll enterprise bean in Linking Security Role
References to Security Roles would assign principals and/or principal groups to the security-role
payroll-department, and the assigned principals and/or principal groups would be implicitly assigned
also to the linked security role reference payroll.

The Enterprise Beans architecture does not specify how an enterprise should implement its security
architecture. Therefore, the process of assigning the logical security roles defined in the application’s
deployment descriptor to the operational environment’s security concepts is specific to that operational
environment. Typically, the deployment process consists of assigning to each security role one or more
user groups (or individual users) defined in the operational environment. This assignment is done on a
per-application basis. (That is, if multiple independent ejb-jar files use the same security role name, each
may be assigned differently.) If the Deployer does not assign the logical security roles defined by the
application to groups in the operational environment, it must be assumed that a logical role maps to a
principal or principal group of the same name.

11.4.3. Principal Delegation

The Deployer is responsible for configuring the principal delegation for inter-component calls. The
Deployer must follow any instructions supplied by the Bean Provider and/or Application Assembler
(for example, provided in the RunAs metadata annotations, the run-as elements of the deployment
descriptor, in the description elements of the annotations or deployment descriptor, or in a
deployment manual).

11.4. Deployer’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 277

If the security identity is defaulted, or it is explicitly specified that the caller identity be used (e.g., use-
caller-identity deployment descriptor element is specified), the caller principal is propagated from
one component to another (i.e., the caller principal of the first enterprise bean in a call-chain is passed
to the enterprise beans down the chain).

If the Bean Provider or Application Assembler specifies that a run-as identity be used on behalf of a
particular enterprise bean, the Deployer must configure the enterprise beans such that the run-as
principal is used as the caller principal on any calls that the enterprise bean makes to other beans, and
that the run-as principal is propagated along the call-chain of those other beans (in the absence of the
specification of any further run-as elements).

11.4.4. Security Management of Resource Access

The Deployer’s responsibilities with respect to securing resource managers access are defined in
Deployer’s Responsibility.

11.4.5. General Notes on Deployment Descriptor Processing

The Deployer can use the security view defined in the deployment descriptor by the Bean Provider and
Application Assembler merely as "hints" and may change the information whenever necessary to
adapt the security policy to the operational environment.

Since providing the security information is optional for the Bean Provider and Application Assembler,
the Deployer is responsible for performing any tasks that have not been done by the Bean Provider or
Application Assembler. (For example, if the definition of security roles and method permissions is
missing in the metadata annotations and in deployment descriptor, the Deployer must define the
security roles and method permissions for the application.) It is not required that the Deployer store
the output of this activity in the standard ejb-jar file format.

11.5. Enterprise Beans Client Responsibilities
This section defines the rules that the Enterprise Beans client program must follow to ensure that the
security context passed on the client calls, and possibly imported by the enterprise bean, do not
conflict with the Enterprise Beans server’s capabilities for association between a security context and
transactions.

These rules are:

• A transactional client cannot change its principal association within a transaction. This rule
ensures that all calls from the client within a transaction are performed with the same security
context.

• A session bean’s client must not change its principal association for the duration of the
communication with the session object. This rule ensures that the server can associate a security
identity with the session instance at instance creation time, and never have to change the security
association during the session instance lifetime.

11.5. Enterprise Beans Client Responsibilities

278 Jakarta® Enterprise Beans, Core Features Final

• If transactional requests within a single transaction arrive from multiple clients (this could happen
if there are intermediary objects or programs in the transaction call-chain), all requests within the
same transaction must be associated with the same security context.

11.6. Container Provider’s Responsibilities
This section describes the responsibilities of the Container Provider and Server Provider.

11.6.1. Deployment Tools

The Container Provider is responsible for providing the deployment tools that the Deployer can use to
perform the tasks defined in Deployer’s Responsibilities.

The deployment tools read the information from the beans’ metadata annotations and/or deployment
descriptor and present the information to the Deployer. The tools guide the Deployer through the
deployment process, and present him or her with choices for mapping the security information in the
metadata annotations and deployment descriptor to the security management mechanisms and
policies used in the target operational environment.

The deployment tools’ output is stored in an Enterprise Beans container-specific manner, and is
available at runtime to the Enterprise Beans container.

11.6.2. Security Domain(s)

The Enterprise Beans container provides a security domain and one or more principal realms to the
enterprise beans. The Enterprise Beans architecture does not specify how an Enterprise Beans server
should implement a security domain, and does not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the Enterprise Beans server. For
example, the Enterprise Beans server may store X509 certificates or it might use an external security
provider such as Kerberos.

The Enterprise Beans specification does not define the scope of the security domain. For example, the
scope may be defined by the boundaries of the application, Enterprise Beans server, operating system,
network, or enterprise.

The Enterprise Beans server can, but is not required to, provide support for multiple security domains,
and/or multiple principal realms.

The case of multiple domains on the same Enterprise Beans server can happen when a large server is
used for application hosting. Each hosted application can have its own security domain to ensure security
and management isolation between applications owned by multiple organizations.

11.6.3. Security Mechanisms

The Container Provider must provide the security mechanisms necessary to enforce the security

11.6. Container Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 279

policies set by the Deployer. The Enterprise Beans specification does not specify the exact mechanisms
that must be implemented and supported by the Enterprise Beans server.

The typical security functions provided by the Enterprise Beans server include:

• Authentication of principals.

• Access authorization for Enterprise Beans calls and resource manager access.

• Secure communication with remote clients (privacy, integrity, etc.).

11.6.4. Passing Principals on Enterprise Beans Calls

The Container Provider is responsible for providing the deployment tools that allow the Deployer to
configure the principal delegation for calls from one enterprise bean to another. The Enterprise Beans
container is responsible for performing the principal delegation as specified by the Deployer.

The Enterprise Beans container must be capable of allowing the Deployer to specify that, for all calls
from a single application within a single Jakarta EE product, the caller principal is propagated on calls
from one enterprise bean to another (i.e., the multiple beans in the call chain will see the same return
value from getCallerPrincipal).

This requirement is necessary for applications that need a consistent return value of getCallerPrincipal
across a chain of calls between enterprise beans.

The Enterprise Beans container must be capable of allowing the Deployer to specify that a run-as
principal be used for the execution of the business, home, and component interfaces, no-interface
view, and/or web service endpoint methods of a session or an entity [76] bean, or for the message
listener methods of a message-driven bean.

11.6.5. Security Methods in jakarta.ejb.EJBContext

The Enterprise Beans container must provide access to the caller’s security context information from
the enterprise beans’ instances via the getCallerPrincipal() and isCallerInRole(String roleName)

methods. The Enterprise Beans container must provide the caller’s security context information during
the execution of a business method invoked via the enterprise bean’s business, home, component, no-
interface view, or messsage listener interface, web service endpoint, and/or TimedObject interface, as
defined in Operations Allowed in the Methods of a Stateful Session Bean, Operations Allowed in the
Methods of a Stateless Session Bean,Operations Allowed in the Methods of a Message-Driven Bean,
Operations Allowed in the Methods of Entity Class in Container-Managed Persistence, and Operations
Allowed in the Methods of Entity Class in Bean-Managed Persistence. The container must ensure that
all enterprise bean method invocations received through these interfaces are associated with some
principal. If the security identity of the caller has not been established, the container returns the
container’s representation of the unauthenticated identity. The container must never return a null
from the getCallerPrincipal method.

11.6. Container Provider’s Responsibilities

280 Jakarta® Enterprise Beans, Core Features Final

./enterprise-beans-spec-opt-4.0.pdf#a1367
./enterprise-beans-spec-opt-4.0.pdf#a2625
./enterprise-beans-spec-opt-4.0.pdf#a2625

11.6.6. Secure Access to Resource Managers

The Container Provider is responsible for providing secure access to resource managers as described
in Container Provider Responsibility.

11.6.7. Principal Mapping

If the application requires that its clients are deployed in a different security domain, or if multiple
applications deployed across multiple security domains need to interoperate, the Container Provider is
responsible for the mechanism and tools that allow mapping of principals. The tools are used by the
System Administrator to configure the security for the application’s environment.

11.6.8. System Principal

The Enterprise Beans specification does not define the "system" principal under which the JVM
running an enterprise bean’s method executes.

Leaving the principal undefined makes it easier for the Enterprise Beans container vendors to provide
runtime support for Enterprise Beans on top of their existing server infrastructures. For example, while
one Enterprise Beans container implementation can execute all instances of all enterprise beans in a
single JVM, another implementation can use a separate JVM per ejb-jar per client. Some Enterprise Beans
containers may make the system principal the same as the application-level principal. Others may use
different principals, potentially from different principal realms and even security domains.

11.6.9. Runtime Security Enforcement

The Enterprise Beans container is responsible for enforcing the security policies defined by the
Deployer. The implementation of the enforcement mechanism is Enterprise Beans container
implementation-specific. The Enterprise Beans container may, but does not have to, use the Java
programming language security as the enforcement mechanism.

For example, to isolate multiple executing enterprise bean instances, the Enterprise Beans container can
load the multiple instances into the same JVM and isolate them via using multiple class loaders, or it can
load each instance into its own JVM and rely on the address space protection provided by the operating
system.

The general security enforcement requirements for the Enterprise Beans container follow:

• The Enterprise Beans container must provide enforcement of the client access control per the
policy defined by the Deployer. A caller is allowed to invoke a method if, and only if, the method is
specified as PermitAll or the caller is assigned at least one of the security roles that includes the
method in its method permissions definition. (That is, it is not meant that the caller must be
assigned all the roles associated with the method.) If the container denies a client access to a
business method, the container should throw the jakarta.ejb.EJBAccessException.[77] If the
Enterprise Beans 2.1 client view is used, the container must throw the java.rmi.RemoteException (or
its subclass, the java.rmi.AccessException) to the client if the client is a remote client, or the

11.6. Container Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 281

jakarta.ejb.EJBException (or its subclass, the jakarta.ejb.AccessLocalException) if the client is a
local client.

• The Enterprise Beans container must isolate an enterprise bean instance from other instances and
other application components running on the server. The Enterprise Beans container must ensure
that other enterprise bean instances and other application components are allowed to access an
enterprise bean only via the enterprise bean’s business interface, component interface, home
interface, no-interface view, and/or web service endpoint.

• The Enterprise Beans container must isolate an enterprise bean instance at runtime such that the
instance does not gain unauthorized access to privileged system information. Such information
includes the internal implementation classes of the container, the various runtime state and
context maintained by the container, object references of other enterprise bean instances, or
resource managers used by other enterprise bean instances. The Enterprise Beans container must
ensure that the interactions between the enterprise beans and the container are only through the
Enterprise Beans architected views.

• The Enterprise Beans container must ensure the security of the persistent state of the enterprise
beans.

• The Enterprise Beans container must manage the mapping of principals on calls to other enterprise
beans or on access to resource managers according to the security policy defined by the Deployer.

• The container must allow the same enterprise bean to be deployed independently multiple times,
each time with a different security policy.[78] The container must allow multiple-deployed enterprise
beans to co-exist at runtime.

11.6.10. Audit Trail

The Enterprise Beans container may provide a security audit trail mechanism. A security audit trail
mechanism typically logs all java.security Exceptions. It also logs all denials of access to Enterprise
Beans servers, Enterprise Beans containers, Enterprise Beans business interfaces, Enterprise Beans
component interfaces, Enterprise Beans home interfaces, Enterprise Beans no-interface views, and
Enterprise Beans web service endpoints.

11.7. System Administrator’s Responsibilities
This section defines the security-related responsibilities of the System Administrator. Note that some
responsibilities may be carried out by the Deployer instead, or may require cooperation of the
Deployer and the System Administrator.

11.7.1. Security Domain Administration

The System Administrator is responsible for the administration of principals. Security domain
administration is beyond the scope of the Enterprise Beans specification.

Typically, the System Administrator is responsible for creating a new user account, adding a user to a
user group, removing a user from a user group, and removing or freezing a user account.

11.7. System Administrator’s Responsibilities

282 Jakarta® Enterprise Beans, Core Features Final

11.7.2. Principal Mapping

If the client is in a different security domain than the target enterprise bean, the System Administrator
is responsible for mapping the principals used by the client to the principals defined for the enterprise
bean. The result of the mapping is available to the Deployer.

The specification of principal mapping techniques is beyond the scope of the Enterprise Beans
architecture.

11.7.3. Audit Trail Review

If the Enterprise Beans container provides an audit trail facility, the System Administrator is
responsible for its management.

[74] If the Bean Provider and Application Assembler do not define security roles, the Deployer will have to define
security roles at deployment time.
[75] Component contract and client view of entity beans are described in the Enterprise Beans Optional Features
document [2].
[76] Component contract and client view of entity beans are described in the Enterprise Beans Optional Features
document [2].
[77] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.AccessException is
thrown to the client instead.
[78] For example, the enterprise bean may be installed each time using a different bean name (as specified by means of
the deployment descriptor).

11.7. System Administrator’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 283

Chapter 12. Timer Service
This chapter defines the Enterprise Beans container-managed Timer Service. The Enterprise Beans
Timer Service is a container-provided service that allows the Bean Provider to register enterprise
beans for timer callbacks to occur according to a calendar-based schedule, at a specified time, after a
specified elapsed time, or at specified intervals.

12.1. Overview
Enterprise applications that model workflow-type business processes are dependent on notifications
that certain temporal events have occurred in order to manage the semantic state transitions that are
intrinsic to the business processes that they model.

The Enterprise Beans Timer Service is a container-managed service that allows callbacks to be
scheduled for time-based events. The container provides a reliable and transactional notification
service for timed events. Timer notifications may be scheduled to occur according to a calendar-based
schedule, at a specific time, after a specific elapsed duration, or at specific recurring intervals.

The Timer Service is implemented by the Enterprise Beans container. An enterprise bean accesses this
service by means of dependency injection, through the EJBContext interface, or through lookup in the
JNDI namespace.

The Enterprise Beans Timer Service is a coarse-grained timer notification service that is designed for
use in the modeling of application-level processes. It is not intended for the modeling of real-time
events.

While timer durations are expressed in millisecond units, this is because the millisecond is the unit
of time granularity used by the APIs of the Java SE platform. It is expected that most timed events
will correspond to hours, days, or longer periods of time.

The following sections describe the Timer Service with respect to the various individual Enterprise
Beans roles.

12.2. Bean Provider’s View of the Timer Service
The Enterprise Beans Timer Service is a container-provided service that allows enterprise beans to be
registered for timer callback methods to occur according to a calendar-based schedule, at a specified
time, after a specified elapsed time, or after specified intervals. The Timer Service provides methods
for the programmatic creation and cancellation of timers, as well as for locating the timers that are
associated with a bean or with all beans in an Enterprise Beans module. Timers can also be created
automatically by the container at deployment time based on metadata in the bean class or in the
deployment descriptor.

12.1. Overview

284 Jakarta® Enterprise Beans, Core Features Final

A timer is created to schedule timed callbacks. The bean class of an enterprise bean that uses the Timer
Service can provide one or more timeout callback methods. A bean can have one or more callback
methods corresponding to automatically-created timers as well as a callback method corresponding to
one or more programmatically-created timers.

For programmatically created timers, the timeout callback method must either be a single method that
is annotated with the Timeout annotation or the bean must implement the jakarta.ejb.TimedObject
interface. The jakarta.ejb.TimedObject interface has a single method, the timer callback method
ejbTimeout.

For automatically created timers, the Schedule annotation denotes its the timeout method.

Timers can be created for stateless session beans, singleton session beans, message-driven beans.[79]

Timers cannot be created for stateful session beans.[80]

The timeout callback method invocation for a timer that is created for a stateless session bean or a
message-driven bean may be called on any bean instance in the pooled state.

The timeout callback method for a programmatically created persistent timer will be invoked on the
JVM on which the timer was created or on another JVM instance across which the container is
distributed. The timeout callback method for a programmatically created non-persistent timer will be
invoked on the JVM on which the timer was created. The timeout callback method for a
programmatically created timer is invoked on a single JVM instance regardless of the number of JVMs
across which the container is distributed.

For each automatically-created persistent timer, the container creates a single persistent timer,
regardless of the number of JVMs across which the container is distributed. For automatically-created
non-persistent timers, the container creates a new non-persistent timer during application
initialization for each JVM across which the container is distributed.

In the event of a container crash or container shutdown, the timeout callback method for a persistent
timer that has not been cancelled will be invoked on a new JVM when the container is restarted or on
another JVM instance across which the container is distributed. This rule applies to both
programmatically or automatically created persistent timers.

When the time specified at timer creation elapses, the container invokes the associated timeout
callback method of the bean. A timer may be cancelled before its expiration. If a timer is cancelled, its
associated timeout callback method is not called.[81] A timer is cancelled by calling its cancel method.

Invocations of the timeout callback methods and the methods of the Timer Service to
programmatically create timers and to cancel timers are typically made within a transaction.

The Timer Service is intended for the modelling of long-lived business processes. Timers survive
container crashes, server shutdown, and the activation/passivation and load/store cycles of the
enterprise beans that are registered with them. These persistent guarantees can optionally be disabled
on a per-timer basis.

12.2. Bean Provider’s View of the Timer Service

Final Jakarta® Enterprise Beans, Core Features 285

12.2.1. Calendar-Based Time Expressions

The Timer Service allows a timer callback schedule to be expressed using a calendar-based syntax that
is modeled after the UNIX cron facility. Calendar-based expressions can be used both for programmatic
timer creation and for automatic timer creation, and can be specified by means of annotations or the
deployment descriptor. Each of these approaches for expressing the calendar-based schedule shares
common syntax and defaults.

12.2.1.1. Calendar-Based Time Expression Attributes

There are seven attributes in a calendar-based time expression:

• second: one or more seconds within a minute
Allowable values: [0,59]

• minute: one or more minutes within an hour
Allowable values: [0,59]

• hour: one or more hours within a day
Allowable values: [0,23]

• dayOfMonth: one or more days within a month
Allowable values:

◦ [1,31] or

◦ [-7, -1] or

◦ "Last" or

◦ {"1st", "2nd", "3rd", "4th", "5th", "Last"}

◦ {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}

"Last" means the last day of the month
-x (where x is in the range [-7, -1]) means x day(s) before the last day of the month
"1st","2nd", etc. applied to a day of the week identifies a single occurrence of that day within the
month.

• month: one or more months within a year
Allowable values:

◦ [1,12] or

◦ {"Jan", "Feb", "Mar", ‘’Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", Dec"}

• dayOfWeek: one or more days within a week
Allowable values:

◦ [0,7] or

◦ {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}

"0" and "7" both refer to Sunday

12.2. Bean Provider’s View of the Timer Service

286 Jakarta® Enterprise Beans, Core Features Final

• year: a particular calendar year
Allowable values: a four-digit calendar year

12.2.1.2. Attribute Syntax

Each attribute supports values expressed in one of the following forms:

Single Value

Use of a single value constrains the attribute to only one of its possible values.

Examples:

 second = "10"
 month= "Sep"

Wild Card

The wild card "*" represents all possible values for a given attribute.

Examples:

 second = "*"
 dayOfWeek = "*"

List

A list constrains the attribute to two or more allowable values or ranges, with a comma used as a
separator character and a dash used to indicate an inclusive range. Each item in the list must be an
individual attribute value or a range. List items cannot themselves be lists, wild-cards, or increments.
Duplicate values are allowed, but are ignored.

Examples:

 second = "10,20,30"
 dayOfWeek = "Mon,Wed,Fri"
 minute = "0-10,30,40"

Range

A range constrains the attribute to an inclusive range of values, with a dash separating both ends of the
range. Each side of the range must be an individual attribute value. Members of a range cannot
themselves be lists, wild-cards, ranges, or increments. In range "x-y", if x is larger than y, the range is
equivalent to "x-max, min-y", where max is the largest value of the corresponding attribute and min is

12.2. Bean Provider’s View of the Timer Service

Final Jakarta® Enterprise Beans, Core Features 287

the smallest. The range "x-x", where both range values are the same, is equivalent to the single value x.
The dayOfWeek range "0-7" is equivalent to "*".

Examples:

 second= "1-10"
 dayOfWeek = "Fri-Mon"
 dayOfMonth = "27-3" (Equivalent to "27-Last, 1-3")

Increments

The forward slash constrains an attribute based on a starting point and an interval, and is used to
specify every N { seconds | minutes | hours } within the { minute | hour | day } respectively. For an
expression x/y, the attribute is constrained to every yth value within the set of allowable values
beginning at time x. The x value is inclusive. The wildcard character (*) can be used in the x position,
and is equivalent to 0. Increments are only supported within the second, minute, and hour attributes.
For the second and minute attributes, x and y must each be in the range [0,59]. For the hour attribute,
x and y must each be in the range [0,23].

Example: Every five minutes within the hour

 minute = "*/5"

The following is equivalent:

 minute = "0,5,10,15,20,25,30,35,40,45,50,55"

Example: Every 10 seconds within the minute, starting at second 30

 second = "30/10"

The following is equivalent:

 second = "30,40,50"

Note that the set of matching increment values stops once the maximum value for that attribute is
exceeded. It does not "roll over" past the boundary.

Example: Every 14 minutes within the hour, for the hours of 1 and 2 a.m.

12.2. Bean Provider’s View of the Timer Service

288 Jakarta® Enterprise Beans, Core Features Final

 (minute = "*/14", hour="1,2")

The following is equivalent:

 (minute = "0,14,28,42,56", hour = "1,2")

Time Zone Support

Calendar-based timer expressions are evaluated in the context of the default time zone associated with
the container in which the application is executing. A calendar-based timer may optionally override
this default and associate itself with a specific time zone. If the calendar-based timer is associated with
a specific time zone, all its times are evaluated in the context of that time zone, regardless of the
default time zone in which the container is executing.

Time zones are specified as an ID String.[82] The set of required time zone IDs is defined by the Zone
Name(TZ) column of the public domain zoneinfo database [21].

12.2.1.3. Expression Rules

The second, minute, and hour attributes have a default value of "0".

The dayOfMonth, month, dayOfWeek, and year attributes have a default value of "*".

If the dayOfMonth attribute has a non-wildcard value and the dayOfWeek attribute has a non-wildcard
value, then the timer expires when the current day matches either the dayOfMonth attribute or the
dayOfWeek attribute (i.e. the current day does not need to match of both attributes).

Whitespace is ignored, except for string constants and numeric values.

All string constants (" Sun ", " Jan ", " 1st ", etc.) are case insensitive.

"5th" is the highest ordinal number allowed as the value for the dayOfMonth

Duplicate values within attributes using the list syntax are ignored.

The increments syntax is only supported within the second, minute, and hour attributes.

12.2.1.4. Examples

These examples illustrate the use of attribute syntax in conjunction with the Schedule annotation.

"Every Monday at Midnight"

 @Schedule(dayOfWeek="Mon")

12.2. Bean Provider’s View of the Timer Service

Final Jakarta® Enterprise Beans, Core Features 289

The following fully-qualified expression is equivalent:

 @Schedule(second="0", minute="0", hour="0", dayOfMonth="*",
 month="*", dayOfWeek="Mon", year="*")

"Every Weekday morning at 3:15"

 @Schedule(minute="15", hour="3", dayOfWeek="Mon-Fri")

"Every morning at 3:15 U.S. Eastern Time"

 @Schedule(minute="15", hour="3", timezone="America/New_York")

"Every minute of every hour of every day"

 @Schedule(minute="*", hour="*")

"Every Monday, Wednesday, and Friday at 30 seconds past noon"

 @Schedule(second="30", hour="12", dayOfWeek="Mon,Wed,Fri")

"Every five minutes within the hour"

 @Schedule(minute="*/5", hour="*")

The following expression is equivalent:

@Schedule(minute="0,5,10,15,20,25,30,35,40,45,50,55", hour="*")

"The last Thursday in November at 2 p.m."

 @Schedule(hour="14", dayOfMonth="Last Thu", month="Nov")

"The second to last day (one day before the last day) of each month at 1 a.m."

 @Schedule(hour="1", dayOfMonth="-1")

12.2. Bean Provider’s View of the Timer Service

290 Jakarta® Enterprise Beans, Core Features Final

"Every other hour within the day starting at noon on the 2nd Tuesday of every month."

 @Schedule(hour= "12/2", dayOfMonth="2nd Tue")

12.2.2. Automatic Timer Creation

The Timer Service supports the automatic creation of timers based on annotations to methods of the
bean class or the deployment descriptor. Automatically created timers are created by the container as
a result of application deployment.

The Schedule annotation can be used to automatically create a timer with a particular timeout
schedule. This annotation is applied to a method of a bean class (or superclass) that should receive the
timer callbacks associated with that schedule.

Example:

// Generate account statements at 1 a.m. on the 1st of every month
@Schedule(hour="1", dayOfMonth="1")
public void generateMonthlyAccountStatements() { ... }

Multiple automatic timers can be applied to a single timeout callback method using the Schedules
annotation.

Example:

@Schedules(
 { @Schedule(hour="12", dayOfWeek="Mon-Thu"),
 @Schedule(hour="11", dayOfWeek="Fri")
})
public void sendLunchNotification() { ... }

Alternatively, as of Enterprise Beans 4.0 multiple automatic timers can be applied to a single timeout
callback method using Schedule as a repeatable annotation.

Example:

@Schedule(hour="12", dayOfWeek="Mon-Thu")
@Schedule(hour="11", dayOfWeek="Fri")
public void sendLunchNotification() { ... }

A Schedule annotation can optionally specify an info string. This string can be retrieved by calling
Timer.getInfo() on the associated Timer object. If no info string is specified, the getInfo() method for a
timer created by means of the Schedule annotation returns null.[83]

12.2. Bean Provider’s View of the Timer Service

Final Jakarta® Enterprise Beans, Core Features 291

Example:

// Generate account statements at 1 a.m. on the 1st of every month
@Schedule(hour="1", dayOfMonth="1", info="AccountStatementTimer")
public void generateMonthlyAccountStatements(Timer t) {
 String timerInfo = t.getInfo();
 ...
}

By default, each Schedule annotation corresponds to a single persistent timer, regardless of the number
of JVMs across which the container is distributed.

12.2.3. Non-persistent Timers

A non-persistent timer is a timer whose lifetime is tied to the JVM in which it is created. A non-
persistent timer is considered cancelled in the event of application shutdown, container crash, or a
failure/shutdown of the JVM on which the timer was started.

Non-persistent timers can be created programmatically or created automatically using the Schedule
annotation or the deployment descriptor.

Automatically-created non-persistent timers can be specified by setting the persistent element of the
Schedule annotation to false.

Example:

@Singleton
public class CacheBean {
 Cache cache;

 // Setup an automatic timer to refresh
 // the Singleton instance cache every 10 minutes
 @Schedule(minute="*/10", hour="*", persistent=false)
 public void refresh() {
 // ...
 }
}

12.2.4. The TimerService Interface

The TimerService object is accessed via dependency injection, through the getTimerService method of
the EJBContext interface, or through lookup in the JNDI namespace. The TimerService interface has the
following methods:

12.2. Bean Provider’s View of the Timer Service

292 Jakarta® Enterprise Beans, Core Features Final

public interface jakarta.ejb.TimerService {

 public Timer createTimer(long duration, java.io.Serializable info);

 public Timer createTimer(java.util.Date expiration,
 java.io.Serializable info);

 public Timer createSingleActionTimer(long duration,
 TimerConfig timerConfig);

 public Timer createSingleActionTimer(java.util.Date expiration,
 TimerConfig timerConfig);

 public Timer createTimer(long initialDuration, long intervalDuration,
 java.io.Serializable info);

 public Timer createTimer(java.util.Date initialExpiration,
 long intervalDuration, java.io.Serializable info);

 public Timer createIntervalTimer(long initialDuration,
 long intervalDuration, TimerConfig timerConfig);

 public Timer createIntervalTimer(java.util.Date initialExpiration,
 long intervalDuration, TimerConfig timerConfig);

 public Timer createCalendarTimer(ScheduleExpression schedule);

 public Timer createCalendarTimer(ScheduleExpression schedule,
 TimerConfig timerConfig);

 public Collection<Timer> getTimers();

 public Collection<Timer> getAllTimers();
}

The timer creation methods allow a timer to be programmatically created as a single-event timer, as an
interval timer, or as a calendar-based timer.

For single-event timers and interval timers, the timer expiration (initial expiration in the case of an
interval timer) may be expressed either in terms of a duration or as an absolute time. The timer
duration is expressed in terms of milliseconds. The Timer Service begins counting down the timer
duration upon timer creation.

For calendar-based timers, the schedule is expressed by a ScheduleExpression helper object passed as a
parameter to a createCalendarTimer method. The ScheduleExpression object represents a calendar based
timer expression conforming to the requirements in Calendar-Based Time Expressions. The

12.2. Bean Provider’s View of the Timer Service

Final Jakarta® Enterprise Beans, Core Features 293

ScheduleExpression class has additional methods that further constrain the schedule based on an
optional start date and/or end date.

The bean may pass some client-specific information at timer creation to help it recognize the
significance of a timer’s expiration. This information is stored by the Timer Service and available
through the timer. The information object must be serializable.[84]

By default, all timers created using the timer creation methods are persistent. A non-persistent timer
can be created by calling setPersistent(false) on a TimerConfig object passed to a timer creation
method. The TimerConfig object also supports the setting of an info object.

The timer creation methods return a Timer object that allows the timer to be cancelled or to obtain
information about the timer prior to its cancellation and/or expiration.

The getTimers method returns active timers associated with the bean. These include all active
persistent timers regardless of the number of JVMs across which the container is distributed, and
active non-persistent timers created in the same JVM as the executing method. Timers returned by this
method include both the programmatically-created timers and the automatically-created timers.

The getAllTimers method returns active timers associated with the beans in the same module in which
the caller bean is packaged. These include all active persistent timers regardless of the number of JVMs
across which the container is distributed, and active non-persistent timers created in the same JVM as
the executing method. Timers returned by this method include both the programmatically-created
timers and the automatically-created timers.

12.2.4.1. Example

This code programmatically creates a timer that expires every Saturday at 1 a.m.

ScheduleExpression schedule =
 new ScheduleExpression().dayOfWeek("Sat").hour(1);
Timer timer = timerService.createCalendarTimer(schedule);

12.2.5. Timeout Callback Methods

The enterprise bean class of a bean that is to be registered with the Timer Service for timer callbacks
must provide one or more timeout callback methods.

There are two kinds of timeout callback methods:

• timeout callback methods for timers that are programmatically created via a TimerService timer
creation method

• timeout callback methods for timers that are automatically created via the Schedule annotation or
the deployment descriptor

12.2. Bean Provider’s View of the Timer Service

294 Jakarta® Enterprise Beans, Core Features Final

12.2.5.1. Timeout Callbacks for Programmatic Timers

All timers created via one of the TimerService timer creation methods for a particular bean must use a
single timeout callback method. This method must either be a single method annotated with the
Timeout annotation (or a method specified as a timeout method in the deployment descriptor) or the
bean must implement the jakarta.ejb.TimedObject interface. The TimedObject interface has a single
method, ejbTimeout. If the bean implements the TimedObject interface, the Timeout annotation or
timeout-method deployment descriptor element can only be used to specify the ejbTimeout method. A
bean can have at most one timeout method for handling programmatic timers.[85]

public interface jakarta.ejb.TimedObject {
 public void ejbTimeout(Timer timer);
}

12.2.5.2. Timeout Callbacks for Automatically Created Timers

Each automatically-created timer is associated with a single timeout callback method. Each timeout
method is declared using either the Schedule annotation or the deployment descriptor. A timed object
can have any number of automatically created timers. The timeout callback method for the
programmatically-created timers can also be associated with the automatically-created timers.

12.2.5.3. Timeout Callback Method Requirements

A timeout callback method must have one of the two signatures below, where <METHOD> designates
the method name.[86]

void <METHOD>()

void <METHOD>(Timer timer) ①

① An earlier version of the specification required that timeout callbacks accept the Timer parameter
but did not require that this parameter be listed when declared by means of the deployment
descriptor. To preserve backward compatibility, a timeout-method that does not include a method-
param element for the jakarta.ejb.Timer parameter may be used to match either a timeout method
signature with or without a Timer parameter, if there is only one method with the specified name.
If methods with the specified name are overloaded, a timeout-method element with an empty method-
params element will be used to explicitly refer to a the no-arg timeout method.

A timeout callback method can have public, private, protected, or package level access. A timeout
callback method must not be declared as final or static.

Timeout callback methods must not throw application exceptions.

When a timer expires (i.e., after one of its scheduled times arrives or after the absolute time specified
has passed), the container calls the associated timeout method of the bean that was registered for the

12.2. Bean Provider’s View of the Timer Service

Final Jakarta® Enterprise Beans, Core Features 295

timer. The timeout method contains the business logic that the Bean Provider supplies to handle the
timeout event. The container calls the timeout method with the timer that has expired. The Bean
Provider can use the getInfo method to retrieve the information that was supplied when the timer was
created. This information may be useful in enabling the timed object to recognize the significance of
the timer expiration.

The container interleaves calls to a timeout callback method with the calls to the business methods
and the life cycle callback methods of the bean. The time at which a timeout callback method is
called may therefore not correspond exactly to the time specified at timer creation. If multiple
timers have been created for a bean and will expire at approximately the same times, the Bean
Provider must be prepared to handle timeout callbacks that are out of sequence. The Bean Provider
must be prepared to handle extraneous calls to a timeout callback method in the event that a timer
expiration is outstanding when a call to the cancellation method has been made.

In general, a timeout callback method can perform the same operations as business methods from the
component interface or message listener methods. See Operations Allowed in the Methods of a
Stateless Session Bean, Operations Allowed in the Methods of a Message-Driven Bean, Operations
Allowed in the Methods of Entity Class in Container-Managed Persistence, and Operations Allowed in
the Methods of Entity Class in Bean-Managed Persistence for the specification of the operations that
may be performed by a timeout callback method.

Since a timeout callback method is an internal method of the bean class, it has no client security
context. When getCallerPrincipal is called from within a timeout callback method, it returns the
container’s representation of the unauthenticated identity.

If the timed object needs to make use of the identity of the timer to recognize the significance of the
timer expiration, it may use the equals method to compare it with any other timer references it might
have outstanding.

If the timer is a single-action timer, the container removes the timer after the timeout callback method
has been successfully invoked (e.g., when the transaction that has been started for the invocation of
the timeout callback method commits). If any method is invoked on the timer after the termination of
the timeout callback method, a NoSuchObjectLocalException must be thrown.

If the timer is a calendar-based timer, the container removes the timer after the timeout callback
method has been successfully invoked (e.g., when the transaction that has been started for the
invocation of the timeout callback method commits) and there are no future timeouts corresponding to
the timer’s schedule expression. If any method is invoked on the timer after it has been removed, the
NoSuchObjectLocalException must be thrown. If the bean invokes the getNextTimeout or getTimeRemaining
method on the timer associated with a timeout callback while within the timeout callback, and there
are no future timeouts for this calendar-based timer, the NoMoreTimeoutsException must be thrown.

12.2. Bean Provider’s View of the Timer Service

296 Jakarta® Enterprise Beans, Core Features Final

./enterprise-beans-spec-opt-4.0.pdf#a1367
./enterprise-beans-spec-opt-4.0.pdf#a1367
./enterprise-beans-spec-opt-4.0.pdf#a2625
./enterprise-beans-spec-opt-4.0.pdf#a2625

12.2.6. The Timer and TimerHandle Interfaces

The jakarta.ejb.Timer interface allows the caller to cancel a timer and to obtain information about the
timer.

The jakarta.ejb.TimerHandle interface allows the caller to obtain a serializable timer handle that may
be persisted. Timer handles are only available for persistent timers. Since timers are local objects, a
TimerHandle must not be passed through a bean’s remote business interface, remote interface or web
service interface.

The methods of these interfaces are as follows:

public interface jakarta.ejb.Timer {
 public void cancel();

 public long getTimeRemaining();

 public java.util.Date getNextTimeout();

 public jakarta.ejb.ScheduleExpression getSchedule();

 public jakarta.ejb.TimerHandle getHandle();

 public java.io.Serializable getInfo();

 public boolean isPersistent();

 public boolean isCalendarTimer();
}

public interface jakarta.ejb.TimerHandle extends java.io.Serializable {
 public jakarta.ejb.Timer getTimer();
}

12.2.7. Timer Identity

Timer instances must be compared using Timer.equals(Object obj) method. The == operator should not
be used for "object equality" of the timers.

12.2.8. Transactions

An enterprise bean typically creates a timer within the scope of a transaction. If the transaction is then
rolled back, the timer creation is rolled back.

A timer is typically cancelled within a transaction. If the transaction is rolled back, the container
rescinds the timer cancellation.

12.2. Bean Provider’s View of the Timer Service

Final Jakarta® Enterprise Beans, Core Features 297

A timeout callback method on a bean with container-managed transactions must have transaction
attribute REQUIRED or REQUIRES_NEW (or Required or RequiresNew if the deployment descriptor is used to
specify the transaction attribute). If the container-managed transaction is rolled back, the container
retries the timeout.

Note that the container must start a new transaction if the REQUIRED (Required) transaction attribute
value is used. This transaction attribute value is allowed so that specification of a transaction attribute
for the timeout callback method can be defaulted.

The transaction semantics described in this section apply to both persistent and non-persistent timers.

12.3. Bean Provider’s Responsibilities
This section defines the Bean Provider’s responsibilities.

12.3.1. Enterprise Bean Class

An enterprise bean that is to be registered with the Timer Service must have a timeout callback
method. The enterprise bean class may have superclasses and/or superinterfaces. If the bean class has
superclasses, the timeout method may be defined in the bean class, or in any of its superclasses.

12.3.2. TimerHandle

Since the TimerHandle interface extends java.io.Serializable, a client may serialize the handle. The
serialized handle may be used later to obtain a reference to the timer identified by the handle. A
TimerHandle is intended to be storable in persistent storage.

A TimerHandle must not be passed as an argument or result of an enterprise bean’s remote business
interface, remote interface, or web service method.

12.4. Container’s Responsibilities
This section describes the responsibilities of the Container Provider to support the Enterprise Beans
Timer Service.

12.4.1. TimerService, Timer, and TimerHandle Interfaces

The container must provide the implementation of the TimerService, Timer, and TimerHandle interfaces.

Timer instances must not be serializable.

The container must implement a timer handle to be usable over the lifetime of the timer.

The container must provide suitable implementations of the Timer.equals(Object obj) and hashCode()
methods.

12.3. Bean Provider’s Responsibilities

298 Jakarta® Enterprise Beans, Core Features Final

12.4.2. Automatic Timers

The container must create a timer for each automatic timer specified by means of the Schedule
annotation or the deployment descriptor.

12.4.3. Timer Expiration and Timeout Callback Method

The container must call the timeout callback method after the timed duration or the absolute time
specification in the timer creation method has passed. The container must also call a timeout callback
method if a time matching the timer’s schedule expression has been reached. The Timer Service must
begin to count down the timer duration upon timer creation. The container must call a timeout
callback method with the expired Timer object, unless the method is a no-arg timeout callback method.

If container-managed transaction demarcation is used and the REQUIRED or REQUIRES_NEW transaction
attribute is specified or defaulted (Required or RequiresNew if the deployment descriptor is used), the
container must begin a new transaction prior to invoking the timeout callback method. If the
transaction fails or is rolled back, the container must retry the timeout at least once.

If the timer is a single-event timer, the container must cause the timer to no longer exist. If a
jakarta.ejb.Timer interface method is subsequently invoked on the timer after the completion of the
timeout callback method, the container must throw the jakarta.ejb.NoSuchObjectLocalException.

If the Bean Provider invokes the setRollbackOnly method from within the timeout callback method, the
container must rollback the transaction in which the timeout callback method is invoked. This has the
effect of rescinding the timer expiration. The container must retry the timeout after the transaction
rollback.

Timers are persistent objects (unless explicitly created as non-persistent timers). In the event of a
container crash or container shutdown, any single-event persistent timers that have expired during
the intervening time before container restart must cause the corresponding timeout callback method
to be invoked upon restart. Any interval persistent timers or schedule based persistent timers that
have expired during the intervening time must cause the corresponding timeout callback method to be
invoked at least once upon restart.

12.4.4. Timer Cancellation

When a timer’s cancel method has been called, the container must cause the timer to no longer exist. If
a jakarta.ejb.Timer method is subsequently invoked on the timer, the container must throw the
jakarta.ejb.NoSuchObjectLocalException.

When the cancel method of an automatically created non-persistent timer has been called, the
container only causes the timer in the currently running JVM to no longer exist. The container does not
nullify the rule that creates a new non-persistent timer upon application startup.

If the transaction in which the timer cancellation occurs is rolled back, the container must restore the
duration of the timer to the duration it would have had if it had not been cancelled. If the timer would

12.4. Container’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 299

have expired by the time that the transaction failed, the failure of the transaction should result in the
expired timer providing an expiration notification after the transaction rolls back.

[79] The calendar-based timer and non-persistent timer functionality is not supported for 2.1 Entity beans.
[80] This functionality may be added in a future release of this specification.
[81] In the event of race conditions, extraneous calls to the timeout callback method may occur.
[82] Note that annotation java.lang.String attributes use the empty string "" as a default, so the expression
@Schedule(timezone="", …) will result in a null value from the corresponding ScheduleExpression.getTimezone()
method.
[83] Note that the default value of the info element of the Schedule annotation is the empty string "". The expression
@Schedule(info="", …) will also result in a null value from the timer’s getInfo() method.
[84] There is currently no way to set the information object after timer creation. An API to do this may be added in a
future release of this specification.
[85] This method may be specified on the bean class or on a superclass. If the Timeout annotation is used or the bean
implements the TimedObject interface, the timeout-method deployment descriptor element, if specified, can only be used
to refer to the same method.
[86] If the bean implements the TimedObject interface, the Timeout annotation may optionally be applied to the
ejbTimeout method.

12.4. Container’s Responsibilities

300 Jakarta® Enterprise Beans, Core Features Final

Chapter 13. Deployment Descriptor
This chapter defines the Enterprise Beans deployment descriptor. Overview provides an overview of
the deployment descriptor. Bean Provider’s Responsibilities through Container Provider’s
Responsibilities describe the information in the deployment descriptor from the perspective of the
Enterprise Beans roles responsible for providing the information. Deployment Descriptor XML Schema
defines the deployment descriptor’s XML Schema elements that are specific to the Enterprise Beans
architecture. The XML Schema elements that are common to the Jakarta EE Platform specifications are
provided in [18].

Entity beans elements are described in the Enterprise Beans Optional Features document [2].

13.1. Overview
The deployment descriptor is part of the contract between the ejb-jar and/or .war file producer and
consumer. This contract covers both the passing of enterprise beans from the Bean Provider to the
Application Assembler, and from the Application Assembler to the Deployer.

An ejb-jar file or .war file produced by the Bean Provider contains one or more enterprise beans and
typically does not contain application assembly instructions. An ejb-jar file or .war file produced by an
Application Assembler contains one or more enterprise beans, plus application assembly information
describing how the enterprise beans are combined into a single application deployment unit.

The Jakarta EE specification defines how enterprise beans and other application components contained in
multiple such files can be assembled into an application.

The role of the deployment descriptor is to capture declarative information that is not included directly
in the enterprise beans’ code and that is intended for the consumer of the ejb-jar file or .war file.

There are two basic kinds of information in the deployment descriptor:

• Enterprise beans’ structural information
Structural information describes the structure of an enterprise bean and declares an enterprise
bean’s external dependencies. Structural information may be provided using metadata annotations
in the beans’ code or in the deployment descriptor. The structural information cannot, in general,
be changed because doing so could break the enterprise bean’s function.

• Application assembly information
Application assembly information describes how the enterprise beans in the ejb-jar file or .war file
are composed into a larger application deployment unit. Providing assembly
information—whether in metadata annotations or in the deployment descriptor—is optional for
the ejb-jar file or .war file producer. Assembly level information can be changed without breaking
the enterprise bean’s function, although doing so may alter the behavior of an assembled
application.

13.1. Overview

Final Jakarta® Enterprise Beans, Core Features 301

13.2. Bean Provider’s Responsibilities
The Bean Provider is responsible for providing in the deployment descriptor the following structural
information for each enterprise bean if this information has not be provided in metadata annotations
or is to be defaulted.

The Bean Provider uses the enterprise-beans element to list the enterprise beans in the ejb-jar file or
.war file.



The following annotations are component-defining annotations and cannot be
overridden by the deployment descriptor:

• Stateless

• Stateful

• Singleton

• MessageDriven

The Bean Provider must provide the following information for each enterprise bean:

• Enterprise bean’s name
A logical name is assigned to each enterprise bean in the ejb-jar file or .war file. The Bean Provider
can specify the enterprise bean’s name in the ejb-name element. If the enterprise bean’s name is
not explicitly specified in metadata annotations or in the deployment descriptor, it defaults to the
unqualified name of the bean class.

• Enterprise bean’s class
If the bean class has not been annotated with a component-defining annotation, the Bean Provider
must use the ejb-class element of the session or message-driven deployment descriptor element to
specify the fully-qualified name of the Java class that implements the enterprise bean’s business
methods. The Bean Provider specifies the enterprise bean’s class name in the ejb-class element.

• Enterprise bean’s local business interface
If the bean class has a local business interface and neither implements the business interface nor
specifies it as a local business interface using metadata annotations on the bean class, the Bean
Provider must specify the fully-qualified name of the enterprise bean’s local business interface in
the business-local element.

• Enterprise bean’s remote business interface
If the bean class has a remote business interface and neither implements nor specifies it as a
remote business interface using metadata annotations on the bean class, the Bean Provider must
specify the fully-qualified name of the enterprise bean’s remote business interface in the business-
remote element.

• Enterprise bean’s remote home interface
If the bean class has a remote home interface, and the remote home interface has not been
specified using metadata annotations, the Bean Provider must specify the fully-qualified name of

13.2. Bean Provider’s Responsibilities

302 Jakarta® Enterprise Beans, Core Features Final

the enterprise bean’s remote home interface in the home element.

• Enterprise bean’s remote component interface
If the bean class has a remote component interface, and the remote home interface has not been
specified using metadata annotations, the Bean Provider must specify the fully-qualified name of
the enterprise bean’s remote component interface in the remote element.

• Enterprise bean’s local home interface.
If the bean class has a local home interface, and the local home interface has not been specified
using metadata annotations, the Bean Provider must specify the fully-qualified name of the
enterprise bean’s local home interface in the local-home element.

• Enterprise bean’s local component interface
If the bean class has a local component interface, and the local home interface has not been
specified using metadata annotations, the Bean Provider must specify the fully-qualified name of
the enterprise bean’s local component interface in the local element.

• Enterprise bean’s no-interface view
If the bean class exposes a no-interface view and the bean exposes at least one other client view
(local, remote, 2.x local home, 2.x remote home, web service), or if the bean class does not have an
empty implements clause and does not specify no-interface view using metadata annotations on
the bean class, or if the metadata-complete attribute has been set to true, the Bean Provider must
specify the local-bean element.

• Enterprise bean’s web service endpoint interface
If the bean class has a web service endpoint interface, and the interface has not been specified
using metadata annotations on the bean class, the Bean Provider must specify the fully-qualified
name of the enterprise bean’s web service endpoint interface in the service-endpoint element. This
element may only be used for stateless session beans.

• Enterprise bean’s type
The enterprise bean types are: session and message-driven. The Bean Provider must use the
appropriate session or message-driven element to declare the enterprise bean’s structural
information if a component-defining annotation has not been used for this purpose. If the bean’s
type has been specified by means of a component-defining annotation, its type cannot be
overridden by means of the deployment descriptor. The bean’s type (and its session type), if
specified, must be the same as that specified in annotations.

• Re-entrancy indication
Session beans and message-driven beans are never re-entrant.

• Session bean’s state management type
If the enterprise bean is a session bean and the bean class has not been annotated with the
Stateful, Stateless, or Singleton annotation, the Bean Provider must use the session-type element
to declare whether the session bean is a stateful, stateless, or singleton session bean.

• Session or message-driven bean’s transaction demarcation type
If the enterprise bean is a session bean or message-driven bean, the Bean Provider may use the
transaction-type element to declare whether transaction demarcation is performed by the
enterprise bean or by the container. If the neither the TransactionType annotation is used nor the

13.2. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 303

transaction-type deployment descriptor element, the bean will have container managed
transaction demarcation.

• Session bean’s concurrency management type
If the enterprise bean is a singleton session bean, the Bean Provider may use the concurrency-
management-type element to declare whether concurrency management is handled by the container
or is performed by the Bean Provider.[87] If neither the ConcurrencyManagement annotation is used nor
the concurrency-management-type deployment descriptor element, the singleton session bean will
have container-managed concurrency.

• Environment entries
The Bean Provider must declare any enterprise bean’s environment entries that have not been
defined by means of metadata annotations, as specified in Bean Provider’s Responsibilities.

• Resource manager connection factory references
The Bean Provider must declare any enterprise bean’s resource manager connection factory
references that have not been defined by means of metadata annotations, as specified in Bean
Provider’s Responsibilities.

• Resource environment references
The Bean Provider must declare any enterprise bean’s references to administered objects that are
associated with resources and that have not been defined by means of metadata annotations, as
specified in Bean Provider’s Responsibilities.

• Enterprise bean’s references
The Bean Provider must declare any enterprise bean’s references to the remote home or remote
business view of other enterprise beans that have not been defined by means of metadata
annotations, as specified in Bean Provider’s Responsibilities.

• Enterprise bean’s local references
The Bean Provider must declare any enterprise bean’s references to the local home or local
business or no-interface view of other enterprise beans that have not been defined by means of
metadata annotations, as specified in Bean Provider’s Responsibilities.

• Web service references
The Bean Provider must declare any enterprise bean’s references to web service interfaces that
have not been defined by means of metadata annotations, as specified in Web Service References.

• Persistence unit references
The Bean Provider must declare any enterprise bean’s references to an entity manager factory for
a persistence unit that have not been defined by means of metadata annotations, as specified in
Persistence Unit References.

• Persistence context references
The Bean Provider must declare any enterprise bean’s references to an entity manager for a
persistence context that have not been defined by means of metadata annotations, as specified in
Persistence Context References.

• Message destination references
The Bean Provider must declare any enterprise bean’s references to message destinations that have
not been defined by means of metadata annotations, as specified in Bean Provider’s

13.2. Bean Provider’s Responsibilities

304 Jakarta® Enterprise Beans, Core Features Final

Responsibilities.

• Security role references
The Bean Provider must declare any enterprise bean’s references to security roles that have not
been defined by means of metadata annotations, as specified in Declaration of Security Roles
Referenced from the Bean’s Code.

• Message-driven bean’s configuration properties
The Bean Provider may provide input to the Deployer as to how a message-driven bean should be
configured upon activation in its operational environment. Activation configuration properties for
a Jakarta Messaging message-driven bean include information about a bean’s intended destination
type, its message selector, and its acknowledgement mode. Other bean types may make use of
different properties. See [16].

• Message-driven bean’s destination
The Bean Provider may provide advice to the Application Assembler as to the destination type to
which a message-driven bean should be assigned when linking message destinations

• Interceptors
The Bean Provider must declare any interceptor classes and methods that have not been declared
by means of metadata annotations.

• Schedule-based timers
The Bean Provider must declare any automatic schedule-based timers that have not been declared
by means of metadata annotations.

• Asynchronous methods
The Bean Provider must declare any asynchronous business methods that have not been
designated as asynchronous by means of metadata annotions.

• Singleton session bean initialization ordering dependencies
The Bean Provider may provide advice to the Application Assembler as to the initialization
ordering dependencies among singleton session beans.

The deployment descriptor produced by the Bean Provider must conform to the XML Schema
definition in Deployment Descriptor XML Schema or to the XML Schema or DTD definition from a
previous version of this specification. The content of the deployment descriptor must conform to the
semantics rules specified in the XML Schema or DTD comments and elsewhere in this specification.

13.3. Application Assembler’s Responsibility
The Application Assembler assembles enterprise beans into deployment units. The Application
Assembler’s input is one or more enterprise beans, un-assembled or contained in one or more ejb-jar
and/or .war files provided by one or more Bean Providers. All of the input could be combined into a
single output ejb-jar file or .war file, or could be be split into multiple output ejb-jar and/or .war files.
Each output ejb-jar file or .war file is either a deployment unit intended for the Deployer or a partially
assembled application that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a case,

13.3. Application Assembler’s Responsibility

Final Jakarta® Enterprise Beans, Core Features 305

the person or organization performs the responsibilities described both in this and the previous sections.

The Application Assembler may modify the following information that was specified by the Bean
Provider:

• Values of environment entries
The Application Assembler may change existing values and/or define new values of environment
properties.

• Description fields
The Application Assembler may change existing or create new description elements.

• Message-driven bean message selector
The Application Assembler may further restrict, but not replace, the value of the messageSelector
activation-config-property element of a Jakarta Messaging message-driven bean—whether this
was defined in metadata annotations or the deployment descriptor.

• Timer schedule attributes
The Application Assembler may override timer attributes, except for the method to which a timer’s
timeouts have been assigned.

In general, the Application Assembler should never modify any of the following:

• Enterprise bean’s abstract schema name
The Application Assembler should not change the enterprise bean’s name defined in the abstract-
schema-name element since Enterprise Beans QL queries may depend on the content of this element.

• Relationship role source element
The Application Assembler should not change the value of an ejb-name element in the
relationship-role-source element.

If any of these elements must be modified by the Application Assembler in order to resolve name
clashes during the merging of ejb-jar and/or .war files, the Application Assembler must also modify all
ejb-ql query strings that depend on the value of the modified element(s).

The Application Assembler must not, in general, modify any other information listed in Bean
Provider’s Responsibilities that was provided in the input ejb-jar file or .war file.

The Application Assembler may, but is not required to, specify any of the following application
assembly information:

• Binding of enterprise bean references
The Application Assembler may link an enterprise bean reference to another enterprise bean in
the ejb-jar file or .war file or in an ejb-jar file in the same Jakarta EE application unit. The
Application Assembler creates the link by adding the ejb-link element to the referencing bean. The
Application Assembler uses the ejb-name of the referenced bean for the link. If there are multiple
enterprise beans with the same ejb-name, the Application Assembler uses the path name specifying
the location of the ejb-jar file that contains the referenced component. The path name is relative to
the referencing ejb-jar file or .war file. The Application Assembler appends the ejb-name of the

13.3. Application Assembler’s Responsibility

306 Jakarta® Enterprise Beans, Core Features Final

referenced bean to the path name separated by #. This allows multiple beans with the same name
to be uniquely identified.

• Linking of message destination references
The Application Assembler may link message consumers and producers through common message
destinations specified in the ejb-jar file or .war file or in the same Jakarta EE application unit. The
Application Assembler creates the link by adding the message-destination-link element to the
referencing bean.

• Security roles
The Application Assembler may define one or more security roles. The security roles define the
recommended security roles for the clients of the enterprise beans. The Application Assembler
defines the security roles using the security-role elements.

• Method permissions
The Application Assembler may define method permissions. Method permission is a binary
relation between the security roles and the methods of the business interfaces, home interfaces,
component interfaces, and/or web service endpoints of the enterprise beans. The Application
Assembler defines method permissions using the method-permission elements. The Application
Assembler may augment or ovrride method permissions defined by the Bean Provider—whether in
metadata annotations or in the deployment descriptor.

• Singleton session bean initialization ordering
The Application Assembler may define or override the depends-on initialization ordering metadata
for a singleton session bean.

• Stateful timeout
The Application Assembler may define or override the stateful timeout.

• Singleton session bean startup
The Application Assembler may override the eager startup designation of a singleton session bean.

• Access timeouts
The Application Assembler may override the access timeout values for methods governed by
container-managed concurrency semantics of stateful and singleton session beans.

• Linking of security role references
If the Application Assembler defines security roles in the deployment descriptor, the Application
Assembler may link the security role references declared by the Bean Provider to the security roles.
The Application Assembler defines these links using the role-link element.

• Security identity
The Application Assembler may specify whether the caller’s security identity should be used for the
execution of the methods of an enterprise bean or whether a specific run-as security identity
should be used. The Application Assembler may override a security identity defined by the Bean
Provider—whether in metadata annotations or in the deployment descriptor

• Transaction attributes
The Application Assembler may define the value of the transaction attributes for the methods of
the business interface, home interface, component interface, no-interface view, web service
endpoint, and TimedObject interface of the enterprise beans that require container-managed

13.3. Application Assembler’s Responsibility

Final Jakarta® Enterprise Beans, Core Features 307

transaction demarcation. All session and message-driven beans declared by the Bean Provider as
transaction-type Container require container-managed transaction demarcation. The Application
Assembler uses the container-transaction elements to declare the transaction attributes.

• Interceptors
The Application Assembler may override, augment, and/or reorder the interceptor methods
defined by the Bean Provider—whether in metadata annotations or in the deployment descriptor.

If an input ejb-jar file or .war file contains application assembly information, the Application
Assembler is allowed to change the application assembly information supplied in the input file. (This
could happen when the input file was produced by another Application Assembler.)

The deployment descriptor produced by the Bean Provider and/or the Application Assembler must
conform to the XML Schema definition in Deployment Descriptor XML Schema or the XML Schema or
DTD definition from a previous version of this specification. The content of the deployment descriptor
must conform to the semantics rules specified in the XML Schema or DTD comments and elsewhere in
this specification.

13.4. Container Provider’s Responsibilities
The Container Provider provides tools that read and import the information contained in the XML
deployment descriptor.

All Enterprise Beans 4.0 implementations must support Enterprise Beans 3.2, Enterprise Beans 3.1,
Enterprise Beans 3.0, Enterprise Beans 2.1, Enterprise Beans 2.0, and Enterprise Beans 1.1 as well as
Enterprise Beans 4.0 deployment descriptors. The definitions of the Enterprise Beans 3.2, Enterprise
Beans 3.1, Enterprise Beans 3.0, Enterprise Beans 2.1, Enterprise Beans 2.0, and Enterprise Beans 1.1
deployment descriptors can be found in the Enterprise Beans 3.2[1] and earlier specifications.

13.5. Deployment Descriptor XML Schema
This section provides the XML Schema for the Enterprise Beans deployment descriptor. The comments
in the XML Schema specify additional requirements for the syntax and semantics that cannot be easily
expressed by the XML Schema mechanism.

The content of the XML elements is in general case sensitive (i.e., unless stated otherwise). This means,
for example, that

<transaction-type>Container</transaction-type>

must be used, rather than:

<transaction-type>container</transaction-type>

13.4. Container Provider’s Responsibilities

308 Jakarta® Enterprise Beans, Core Features Final

All valid ejb-jar deployment descriptors must conform to the XML Schema definition below or to the
XML Schema or DTD definition from a previous version of this specification.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:jakartaee="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="4.0">
 <xsd:annotation>
 <xsd:documentation>

 Copyright (c) 2009, 2020 Oracle and/or its affiliates. All rights reserved.

 This program and the accompanying materials are made available under the
 terms of the Eclipse Public License v. 2.0, which is available at
 http://www.eclipse.org/legal/epl-2.0.

 This Source Code may also be made available under the following Secondary
 Licenses when the conditions for such availability set forth in the
 Eclipse Public License v. 2.0 are satisfied: GNU General Public License,
 version 2 with the GNU Classpath Exception, which is available at
 https://www.gnu.org/software/classpath/license.html.

 SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0

 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 This is the XML Schema for the Enterprise Beans 4.0 deployment descriptor.

 All Enterprise Beans deployment descriptors must indicate
 the schema by using the Jakarta EE namespace:

 https://jakarta.ee/xml/ns/jakartaee

 and by indicating the version of the schema by
 using the version element as shown below:

 <ejb-jar xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 309

 https://jakarta.ee/xml/ns/jakartaee/ejb-jar_4_0.xsd"
 version="4.0">
 ...
 </ejb-jar>

 The instance documents may indicate the published version of
 the schema using the xsi:schemaLocation attribute for the
 Jakarta EE namespace with the following location:

 https://jakarta.ee/xml/ns/jakartaee/ejb-jar_4_0.xsd

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>

 The following conventions apply to all Jakarta EE
 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the
 same JAR file, relative filenames (i.e., those not
 starting with "/") are considered relative to the root of
 the JAR file's namespace. Absolute filenames (i.e., those
 starting with "/") also specify names in the root of the
 JAR file's namespace. In general, relative names are
 preferred. The exception is .war files where absolute
 names are preferred for consistency with the Servlet API.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="jakartaee_9.xsd"/>

<!-- ** -->

 <xsd:element name="ejb-jar"
 type="jakartaee:ejb-jarType">
 <xsd:annotation>
 <xsd:documentation>

 This is the root of the ejb-jar deployment descriptor.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:key name="ejb-name-key">

13.5. Deployment Descriptor XML Schema

310 Jakarta® Enterprise Beans, Core Features Final

 <xsd:annotation>
 <xsd:documentation>

 The ejb-name element contains the name of an enterprise
 bean. The name must be unique within the ejb-jar file or
 .war file.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:enterprise-beans/*"/>
 <xsd:field xpath="jakartaee:ejb-name"/>
 </xsd:key>
 <xsd:keyref name="ejb-name-references"
 refer="jakartaee:ejb-name-key">
 <xsd:annotation>
 <xsd:documentation>

 The keyref indicates the references from
 relationship-role-source must be to a specific ejb-name
 defined within the scope of enterprise-beans element.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath=".//jakartaee:ejb-relationship-role/jakartaee:relationship-
role-source"/>
 <xsd:field xpath="jakartaee:ejb-name"/>
 </xsd:keyref>
 <xsd:key name="role-name-key">
 <xsd:annotation>
 <xsd:documentation>

 A role-name-key is specified to allow the references
 from the security-role-refs.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:assembly-descriptor/jakartaee:security-role"/>
 <xsd:field xpath="jakartaee:role-name"/>
 </xsd:key>
 <xsd:keyref name="role-name-references"
 refer="jakartaee:role-name-key">
 <xsd:annotation>
 <xsd:documentation>

 The keyref indicates the references from
 security-role-ref to a specified role-name.

 </xsd:documentation>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 311

 </xsd:annotation>
 <xsd:selector xpath="jakartaee:enterprise-beans/*/jakartaee:security-role-ref"/>
 <xsd:field xpath="jakartaee:role-link"/>
 </xsd:keyref>
 </xsd:element>

<!-- ** -->

 <xsd:complexType name="access-timeoutType">
 <xsd:annotation>
 <xsd:documentation>

 The access-timeoutType represents the maximum amount of
 time (in a given time unit) that the container should wait for
 a concurrency lock before throwing a timeout exception to the
 client.

 A timeout value of 0 means concurrent access is not permitted.

 A timeout value of -1 means wait indefinitely to acquire a lock.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="timeout"
 type="jakartaee:xsdIntegerType"/>
 <xsd:element name="unit"
 type="jakartaee:time-unit-typeType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="async-methodType">
 <xsd:annotation>
 <xsd:documentation>

 The async-methodType element specifies that a session
 bean method has asynchronous invocation semantics.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method-name"

13.5. Deployment Descriptor XML Schema

312 Jakarta® Enterprise Beans, Core Features Final

 type="jakartaee:string"/>
 <xsd:element name="method-params"
 type="jakartaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="activation-configType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-configType defines information about the
 expected configuration properties of the message-driven bean
 in its operational environment. This may include information
 about message acknowledgement, message selector, expected
 destination type, destination or connection factory lookup
 string, subscription name, etc.

 The configuration information is expressed in terms of
 name/value configuration properties.

 The properties that are recognized for a particular
 message-driven bean are determined by the messaging type.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="activation-config-property"
 type="jakartaee:activation-config-propertyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="activation-config-propertyType">

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 313

 <xsd:annotation>
 <xsd:documentation>

 The activation-config-propertyType contains a name/value
 configuration property pair for a message-driven bean.

 The properties that are recognized for a particular
 message-driven bean are determined by the messaging type.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="activation-config-property-name"
 type="jakartaee:xsdStringType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-config-property-name element contains
 the name for an activation configuration property of
 a message-driven bean.

 For Jakarta Messaging message-driven beans, the following property
 names are recognized: acknowledgeMode,
 messageSelector, destinationType, subscriptionDurability,
 destinationLookup, connectionFactoryLookup, subscriptionName,
 and clientId.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="activation-config-property-value"
 type="jakartaee:xsdStringType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-config-property-value element
 contains the value for an activation configuration
 property of a message-driven bean.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

13.5. Deployment Descriptor XML Schema

314 Jakarta® Enterprise Beans, Core Features Final

<!-- ** -->

 <xsd:complexType name="around-invokeType">
 <xsd:annotation>
 <xsd:documentation>

 The around-invoke type specifies a method on a
 class to be called during the around invoke portion of an
 ejb invocation. Note that each class may have only one
 around invoke method and that the method may not be
 overloaded.

 If the class element is missing then
 the class defining the callback is assumed to be the
 interceptor class or component class in scope at the
 location in the descriptor in which the around invoke
 definition appears.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="class"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0"/>
 <xsd:element name="method-name"
 type="jakartaee:java-identifierType"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="around-timeoutType">
 <xsd:annotation>
 <xsd:documentation>

 The around-timeout type specifies a method on a
 class to be called during the around-timeout portion of
 a timer timeout callback. Note that each class may have
 only one around-timeout method and that the method may not
 be overloaded.

 If the class element is missing then
 the class defining the callback is assumed to be the
 interceptor class or component class in scope at the
 location in the descriptor in which the around-timeout
 definition appears.

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 315

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="class"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0"/>
 <xsd:element name="method-name"
 type="jakartaee:java-identifierType"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="assembly-descriptorType">
 <xsd:annotation>
 <xsd:documentation>

 The assembly-descriptorType defines
 application-assembly information.

 The application-assembly information consists of the
 following parts: the definition of security roles, the
 definition of method permissions, the definition of
 transaction attributes for enterprise beans with
 container-managed transaction demarcation, the definition
 of interceptor bindings, a list of
 methods to be excluded from being invoked, and a list of
 exception types that should be treated as application exceptions.

 All the parts are optional in the sense that they are
 omitted if the lists represented by them are empty.

 Providing an assembly-descriptor in the deployment
 descriptor is optional for the ejb-jar file or .war file producer.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="security-role"
 type="jakartaee:security-roleType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method-permission"
 type="jakartaee:method-permissionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="container-transaction"

13.5. Deployment Descriptor XML Schema

316 Jakarta® Enterprise Beans, Core Features Final

 type="jakartaee:container-transactionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-binding"
 type="jakartaee:interceptor-bindingType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="message-destination"
 type="jakartaee:message-destinationType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="exclude-list"
 type="jakartaee:exclude-listType"
 minOccurs="0"/>
 <xsd:element name="application-exception"
 type="jakartaee:application-exceptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmp-fieldType">
 <xsd:annotation>
 <xsd:documentation>

 The cmp-fieldType describes a container-managed field. The
 cmp-fieldType contains an optional description of the field,
 and the name of the field.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="field-name"
 type="jakartaee:java-identifierType">
 <xsd:annotation>
 <xsd:documentation>

 The field-name element specifies the name of a
 container managed field.

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 317

 The name of the cmp-field of an entity bean with
 cmp-version 2.x must begin with a lowercase
 letter. This field is accessed by methods whose
 names consists of the name of the field specified by
 field-name in which the first letter is uppercased,
 prefixed by "get" or "set".

 The name of the cmp-field of an entity bean with
 cmp-version 1.x must denote a public field of the
 enterprise bean class or one of its superclasses.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmp-versionType">
 <xsd:annotation>
 <xsd:documentation>

 The cmp-versionType specifies the version of an entity bean
 with container-managed persistence. It is used by
 cmp-version elements.

 The value must be one of the two following:

 1.x
 2.x

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="1.x"/>
 <xsd:enumeration value="2.x"/>
 </xsd:restriction>
 </xsd:simpleContent>

13.5. Deployment Descriptor XML Schema

318 Jakarta® Enterprise Beans, Core Features Final

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmr-fieldType">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-fieldType describes the Bean Provider's view of
 a relationship. It consists of an optional description, and
 the name and the class type of a field in the source of a
 role of a relationship. The cmr-field-name element
 corresponds to the name used for the get and set accessor
 methods for the relationship. The cmr-field-type element is
 used only for collection-valued cmr-fields. It specifies the
 type of the collection that is used.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="cmr-field-name"
 type="jakartaee:string">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-field-name element specifies the name of a
 logical relationship field in the entity bean
 class. The name of the cmr-field must begin with a
 lowercase letter. This field is accessed by methods
 whose names consist of the name of the field
 specified by cmr-field-name in which the first
 letter is uppercased, prefixed by "get" or "set".

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmr-field-type"
 type="jakartaee:cmr-field-typeType"
 minOccurs="0"/>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 319

 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmr-field-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-field-type element specifies the class of a
 collection-valued logical relationship field in the entity
 bean class. The value of an element using cmr-field-typeType
 must be either: java.util.Collection or java.util.Set.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="java.util.Collection"/>
 <xsd:enumeration value="java.util.Set"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="concurrency-management-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The concurrency-management-typeType specifies the way concurrency
 is managed for a singleton or stateful session bean.

 The concurrency management type must be one of the following:

 Bean
 Container

 Bean managed concurrency can only be specified for a singleton bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">

13.5. Deployment Descriptor XML Schema

320 Jakarta® Enterprise Beans, Core Features Final

 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="concurrent-lock-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The concurrent-lock-typeType specifies how the container must
 manage concurrent access to a method of a Singleton bean
 with container-managed concurrency.

 The container managed concurrency lock type must be one
 of the following :

 Read
 Write

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="Read"/>
 <xsd:enumeration value="Write"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="concurrent-methodType">
 <xsd:annotation>
 <xsd:documentation>

 The concurrent-methodType specifies information about a method
 of a bean with container managed concurrency.

 The optional lock element specifies the kind of concurrency
 lock asssociated with the method.

 The optional access-timeout element specifies the amount of
 time (in a given time unit) the container should wait for a

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 321

 concurrency lock before throwing an exception to the client.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method"
 type="jakartaee:named-methodType"/>
 <xsd:element name="lock"
 type="jakartaee:concurrent-lock-typeType"
 minOccurs="0"/>
 <xsd:element name="access-timeout"
 type="jakartaee:access-timeoutType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="container-transactionType">
 <xsd:annotation>
 <xsd:documentation>

 The container-transactionType specifies how the container
 must manage transaction scopes for the enterprise bean's
 method invocations. It defines an optional description, a
 list of method elements, and a transaction attribute. The
 transaction attribute is to be applied to all the specified
 methods.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method"
 type="jakartaee:methodType"
 maxOccurs="unbounded"/>
 <xsd:element name="trans-attribute"
 type="jakartaee:trans-attributeType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

13.5. Deployment Descriptor XML Schema

322 Jakarta® Enterprise Beans, Core Features Final

<!-- ** -->

 <xsd:complexType name="depends-onType">
 <xsd:annotation>
 <xsd:documentation>

 The depends-onType is used to express initialization
 ordering dependencies between Singleton components.
 The depends-onType specifies the names of one or more
 Singleton beans in the same application as the referring
 Singleton, each of which must be initialized before
 the referring bean.

 Each dependent bean is expressed using ejb-link syntax.
 The order in which dependent beans are initialized at
 runtime is not guaranteed to match the order in which
 they are listed.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="ejb-name"
 type="jakartaee:ejb-linkType"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The ejb-classType contains the fully-qualified name of the
 enterprise bean's class. It is used by ejb-class elements.

 Example:

 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

]]>
 </xsd:documentation>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 323

 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:fully-qualified-classType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-jarType">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-jarType defines the root element of the Enterprise Beans
 deployment descriptor. It contains

 - an optional description of the ejb-jar file
 - an optional display name
 - an optional icon that contains a small and a large
 icon file name
 - an optional module name. Only applicable to
 stand-alone ejb-jars or ejb-jars packaged in an ear.
 Ignored if specified for an ejb-jar.xml within a .war file.
 In that case, standard .war file module-name rules apply.
 - structural information about all included
 enterprise beans that is not specified through
 annotations
 - structural information about interceptor classes
 - a descriptor for container managed relationships,
 if any.
 - an optional application-assembly descriptor
 - an optional name of an ejb-client-jar file for the
 ejb-jar.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="module-name"
 type="jakartaee:string"
 minOccurs="0"/>
 <xsd:group ref="jakartaee:descriptionGroup"/>
 <xsd:element name="enterprise-beans"
 type="jakartaee:enterprise-beansType"
 minOccurs="0"/>
 <xsd:element name="interceptors"
 type="jakartaee:interceptorsType"
 minOccurs="0"/>
 <xsd:element name="relationships"

13.5. Deployment Descriptor XML Schema

324 Jakarta® Enterprise Beans, Core Features Final

 type="jakartaee:relationshipsType"
 minOccurs="0">
 <xsd:unique name="relationship-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relation-name contains the name of a
 relation. The name must be unique within
 relationships.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:ejb-relation"/>
 <xsd:field xpath="jakartaee:ejb-relation-name"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="assembly-descriptor"
 type="jakartaee:assembly-descriptorType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 Providing an assembly-descriptor in the deployment
 descriptor is optional for the ejb-jar file or .war file
 producer.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-client-jar"
 type="jakartaee:pathType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The optional ejb-client-jar element specifies a JAR
 file that contains the class files necessary for a
 client program to access the
 enterprise beans in the ejb-jar file.

 Example:

 <ejb-client-jar>employee_service_client.jar
 </ejb-client-jar>

]]>
 </xsd:documentation>
 </xsd:annotation>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 325

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="version"
 type="jakartaee:dewey-versionType"
 fixed="4.0"
 use="required">
 <xsd:annotation>
 <xsd:documentation>

 The version specifies the version of the
 Enterprise Beans specification that the instance document must
 comply with. This information enables deployment tools
 to validate a particular Enterprise Beans Deployment
 Descriptor with respect to a specific version of the Enterprise Beans
 schema.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="metadata-complete"
 type="xsd:boolean">
 <xsd:annotation>
 <xsd:documentation>

 The metadata-complete attribute defines whether this
 deployment descriptor and other related deployment
 descriptors for this module (e.g., web service
 descriptors) are complete, or whether the class
 files available to this module and packaged with
 this application should be examined for annotations
 that specify deployment information.

 If metadata-complete is set to "true", the deployment
 tool must ignore any annotations that specify deployment
 information, which might be present in the class files
 of the application.

 If metadata-complete is not specified or is set to
 "false", the deployment tool must examine the class
 files of the application for annotations, as
 specified by the specifications.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

13.5. Deployment Descriptor XML Schema

326 Jakarta® Enterprise Beans, Core Features Final

<!-- ** -->

 <xsd:complexType name="ejb-nameType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The ejb-nameType specifies an enterprise bean's name. It is
 used by ejb-name elements. This name is assigned by the
 file producer to name the enterprise bean in the
 ejb-jar file or .war file's deployment descriptor. The name must be
 unique among the names of the enterprise beans in the same
 ejb-jar file or .war file.

 There is no architected relationship between the used
 ejb-name in the deployment descriptor and the JNDI name that
 the Deployer will assign to the enterprise bean's home.

 The name for an entity bean must conform to the lexical
 rules for an NMTOKEN.

 Example:

 <ejb-name>EmployeeService</ejb-name>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:xsdNMTOKENType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-relationType">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationType describes a relationship between two
 entity beans with container-managed persistence. It is used
 by ejb-relation elements. It contains a description; an
 optional ejb-relation-name element; and exactly two
 relationship role declarations, defined by the
 ejb-relationship-role elements. The name of the
 relationship, if specified, is unique within the ejb-jar

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 327

 file.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relation-name"
 type="jakartaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relation-name element provides a unique name
 within the ejb-jar file for a relationship.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-relationship-role"
 type="jakartaee:ejb-relationship-roleType"
 minOccurs="2"
 maxOccurs="2"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-relationship-roleType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The ejb-relationship-roleType describes a role within a
 relationship. There are two roles in each relationship.

 The ejb-relationship-roleType contains an optional
 description; an optional name for the relationship role; a
 specification of the multiplicity of the role; an optional
 specification of cascade-delete functionality for the role;
 the role source; and a declaration of the cmr-field, if any,
 by means of which the other side of the relationship is

13.5. Deployment Descriptor XML Schema

328 Jakarta® Enterprise Beans, Core Features Final

 accessed from the perspective of the role source.

 The multiplicity and role-source element are mandatory.

 The relationship-role-source element designates an entity
 bean by means of an ejb-name element. For bidirectional
 relationships, both roles of a relationship must declare a
 relationship-role-source element that specifies a cmr-field
 in terms of which the relationship is accessed. The lack of
 a cmr-field element in an ejb-relationship-role specifies
 that the relationship is unidirectional in navigability and
 the entity bean that participates in the relationship is
 "not aware" of the relationship.

 Example:

 <ejb-relation>
 <ejb-relation-name>Product-LineItem</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>product-has-lineitems
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>ProductEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>

 Support for entity beans is optional as of Enterprise Beans 3.2.

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relationship-role-name"
 type="jakartaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationship-role-name element defines a
 name for a role that is unique within an
 ejb-relation. Different relationships can use the
 same name for a role.

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 329

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="multiplicity"
 type="jakartaee:multiplicityType"/>
 <xsd:element name="cascade-delete"
 type="jakartaee:emptyType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The cascade-delete element specifies that, within a
 particular relationship, the lifetime of one or more
 entity beans is dependent upon the lifetime of
 another entity bean. The cascade-delete element can
 only be specified for an ejb-relationship-role
 element contained in an ejb-relation element in
 which the other ejb-relationship-role
 element specifies a multiplicity of One.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="relationship-role-source"
 type="jakartaee:relationship-role-sourceType"/>
 <xsd:element name="cmr-field"
 type="jakartaee:cmr-fieldType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="enterprise-beansType">
 <xsd:annotation>
 <xsd:documentation>

 The enterprise-beansType declares one or more enterprise
 beans. Each bean can be a session, entity or message-driven
 bean.

 </xsd:documentation>

13.5. Deployment Descriptor XML Schema

330 Jakarta® Enterprise Beans, Core Features Final

 </xsd:annotation>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="session"
 type="jakartaee:session-beanType">
 <xsd:unique name="session-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an enterprise bean reference. The enterprise bean reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:ejb-local-ref"/>
 <xsd:field xpath="jakartaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an enterprise bean
 reference. The enterprise bean reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:ejb-ref"/>
 <xsd:field xpath="jakartaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 331

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:resource-env-ref"/>
 <xsd:field xpath="jakartaee:resource-env-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:message-destination-ref"/>
 <xsd:field xpath="jakartaee:message-destination-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:resource-ref"/>
 <xsd:field xpath="jakartaee:res-ref-name"/>
 </xsd:unique>
 <xsd:unique name="session-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:env-entry"/>

13.5. Deployment Descriptor XML Schema

332 Jakarta® Enterprise Beans, Core Features Final

 <xsd:field xpath="jakartaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="entity"
 type="jakartaee:entity-beanType">
 <xsd:unique name="entity-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an enterprise bean reference. The enterprise bean reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:ejb-local-ref"/>
 <xsd:field xpath="jakartaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an enterprise bean
 reference. The enterprise bean reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:ejb-ref"/>
 <xsd:field xpath="jakartaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 333

 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:resource-env-ref"/>
 <xsd:field xpath="jakartaee:resource-env-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:message-destination-ref"/>
 <xsd:field xpath="jakartaee:message-destination-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:resource-ref"/>
 <xsd:field xpath="jakartaee:res-ref-name"/>
 </xsd:unique>
 <xsd:unique name="entity-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>

13.5. Deployment Descriptor XML Schema

334 Jakarta® Enterprise Beans, Core Features Final

 <xsd:selector xpath="jakartaee:env-entry"/>
 <xsd:field xpath="jakartaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="message-driven"
 type="jakartaee:message-driven-beanType">
 <xsd:unique name="messaged-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an enterprise bean reference. The enterprise bean reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:ejb-local-ref"/>
 <xsd:field xpath="jakartaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an enterprise bean
 reference. The enterprise bean reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:ejb-ref"/>
 <xsd:field xpath="jakartaee:ejb-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 335

 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:resource-env-ref"/>
 <xsd:field xpath="jakartaee:resource-env-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:message-destination-ref"/>
 <xsd:field xpath="jakartaee:message-destination-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:resource-ref"/>
 <xsd:field xpath="jakartaee:res-ref-name"/>
 </xsd:unique>
 <xsd:unique name="messaged-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>

13.5. Deployment Descriptor XML Schema

336 Jakarta® Enterprise Beans, Core Features Final

 </xsd:annotation>
 <xsd:selector xpath="jakartaee:env-entry"/>
 <xsd:field xpath="jakartaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>
 </xsd:choice>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="entity-beanType">
 <xsd:annotation>
 <xsd:documentation>

 Support for entity beans is optional as of Enterprise Beans 3.2.

 The entity-beanType declares an entity bean. The declaration
 consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name
 - a unique name assigned to the enterprise bean
 in the deployment descriptor
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of the entity bean's remote home interface. This
 element is not required to be supported by all implementations.
 Any use of this element is non-portable.
 - the names of the entity bean's remote home
 and remote interfaces, if any
 - the names of the entity bean's local home and local
 interfaces, if any
 - the entity bean's implementation class
 - the optional entity bean's persistence management type. If
 this element is not specified it is defaulted to Container.
 - the entity bean's primary key class name
 - an indication of the entity bean's reentrancy
 - an optional specification of the
 entity bean's cmp-version
 - an optional specification of the entity bean's
 abstract schema name
 - an optional list of container-managed fields
 - an optional specification of the primary key

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 337

 field
 - an optional declaration of the bean's environment
 entries
 - an optional declaration of the bean's enterprise bean
 references
 - an optional declaration of the bean's local enterprise bean
 references
 - an optional declaration of the bean's web
 service references
 - an optional declaration of the security role
 references
 - an optional declaration of the security identity
 to be used for the execution of the bean's methods
 - an optional declaration of the bean's
 resource manager connection factory references
 - an optional declaration of the bean's
 resource environment references
 - an optional declaration of the bean's message
 destination references
 - an optional set of query declarations
 for finder and select methods for an entity
 bean with cmp-version 2.x.

 The optional abstract-schema-name element must be specified
 for an entity bean with container-managed persistence and
 cmp-version 2.x.

 The optional primkey-field may be present in the descriptor
 if the entity's persistence-type is Container.

 The optional cmp-version element may be present in the
 descriptor if the entity's persistence-type is Container. If
 the persistence-type is Container and the cmp-version
 element is not specified, its value defaults to 2.x.

 The optional home and remote elements must be specified if
 the entity bean cmp-version is 1.x.

 The optional home and remote elements must be specified if
 the entity bean has a remote home and remote interface.

 The optional local-home and local elements must be specified
 if the entity bean has a local home and local interface.

 Either both the local-home and the local elements or both
 the home and the remote elements must be specified.

 The optional query elements must be present if the

13.5. Deployment Descriptor XML Schema

338 Jakarta® Enterprise Beans, Core Features Final

 persistence-type is Container and the cmp-version is 2.x and
 query methods other than findByPrimaryKey have been defined
 for the entity bean.

 The other elements that are optional are "optional" in the
 sense that they are omitted if the lists represented by them
 are empty.

 At least one cmp-field element must be present in the
 descriptor if the entity's persistence-type is Container and
 the cmp-version is 1.x, and none must not be present if the
 entity's persistence-type is Bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="jakartaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="jakartaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="jakartaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="home"
 type="jakartaee:homeType"
 minOccurs="0"/>
 <xsd:element name="remote"
 type="jakartaee:remoteType"
 minOccurs="0"/>
 <xsd:element name="local-home"
 type="jakartaee:local-homeType"
 minOccurs="0"/>
 <xsd:element name="local"
 type="jakartaee:localType"
 minOccurs="0"/>
 <xsd:element name="ejb-class"
 type="jakartaee:ejb-classType"/>
 <xsd:element name="persistence-type"
 type="jakartaee:persistence-typeType"/>
 <xsd:element name="prim-key-class"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>

 The prim-key-class element contains the
 fully-qualified name of an
 entity bean's primary key class.

 If the definition of the primary key class is

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 339

 deferred to deployment time, the prim-key-class
 element should specify java.lang.Object.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="reentrant"
 type="jakartaee:true-falseType">
 <xsd:annotation>
 <xsd:documentation>

 The reentrant element specifies whether an entity
 bean is reentrant or not.

 The reentrant element must be one of the two
 following: true or false

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmp-version"
 type="jakartaee:cmp-versionType"
 minOccurs="0"/>
 <xsd:element name="abstract-schema-name"
 type="jakartaee:java-identifierType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The abstract-schema-name element specifies the name
 of the abstract schema type of an entity bean with
 cmp-version 2.x. It is used in Enterprise Beans QL queries.

 For example, the abstract-schema-name for an entity
 bean whose local interface is
 com.acme.commerce.Order might be Order.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmp-field"
 type="jakartaee:cmp-fieldType"
 minOccurs="0"
 maxOccurs="unbounded"/>

13.5. Deployment Descriptor XML Schema

340 Jakarta® Enterprise Beans, Core Features Final

 <xsd:element name="primkey-field"
 type="jakartaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The primkey-field element is used to specify the
 name of the primary key field for an entity with
 container-managed persistence.

 The primkey-field must be one of the fields declared
 in the cmp-field element, and the type of the field
 must be the same as the primary key type.

 The primkey-field element is not used if the primary
 key maps to multiple container-managed fields
 (i.e. the key is a compound key). In this case, the
 fields of the primary key class must be public, and
 their names must correspond to the field names of
 the entity bean class that comprise the key.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:group ref="jakartaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="security-role-ref"
 type="jakartaee:security-role-refType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="security-identity"
 type="jakartaee:security-identityType"
 minOccurs="0"/>
 <xsd:element name="query"
 type="jakartaee:queryType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="exclude-listType">
 <xsd:annotation>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 341

 <xsd:documentation>

 The exclude-listType specifies one or more methods which
 the Assembler marks to be uncallable.

 If the method permission relation contains methods that are
 in the exclude list, the Deployer should consider those
 methods to be uncallable.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method"
 type="jakartaee:methodType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="application-exceptionType">
 <xsd:annotation>
 <xsd:documentation>

 The application-exceptionType declares an application
 exception. The declaration consists of:

 - the exception class. When the container receives
 an exception of this type, it is required to
 forward this exception as an applcation exception
 to the client regardless of whether it is a checked
 or unchecked exception.
 - an optional rollback element. If this element is
 set to true, the container must rollback the current
 transaction before forwarding the exception to the
 client. If not specified, it defaults to false.
 - an optional inherited element. If this element is
 set to true, subclasses of the exception class type
 are also automatically considered application
 exceptions (unless overriden at a lower level).
 If set to false, only the exception class type is

13.5. Deployment Descriptor XML Schema

342 Jakarta® Enterprise Beans, Core Features Final

 considered an application-exception, not its
 exception subclasses. If not specified, this
 value defaults to true.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="exception-class"
 type="jakartaee:fully-qualified-classType"/>
 <xsd:element name="rollback"
 type="jakartaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="inherited"
 type="jakartaee:true-falseType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptorsType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptorsType element declares one or more interceptor
 classes used by components within this ejb-jar file or .war file. The
declaration
 consists of :

 - An optional description.
 - One or more interceptor elements.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor"
 type="jakartaee:interceptorType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 343

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptorType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptorType element declares information about a single
 interceptor class. It consists of :

 - An optional description.
 - The fully-qualified name of the interceptor class.
 - An optional list of around invoke methods declared on the
 interceptor class and/or its super-classes.
 - An optional list of around timeout methods declared on the
 interceptor class and/or its super-classes.
 - An optional list environment dependencies for the interceptor
 class and/or its super-classes.
 - An optional list of post-activate methods declared on the
 interceptor class and/or its super-classes.
 - An optional list of pre-passivate methods declared on the
 interceptor class and/or its super-classes.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-class"
 type="jakartaee:fully-qualified-classType"/>
 <xsd:element name="around-invoke"
 type="jakartaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="around-timeout"
 type="jakartaee:around-timeoutType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="around-construct"
 type="jakartaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="jakartaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="post-activate"

13.5. Deployment Descriptor XML Schema

344 Jakarta® Enterprise Beans, Core Features Final

 type="jakartaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="pre-passivate"
 type="jakartaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptor-bindingType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The interceptor-bindingType element describes the binding of
 interceptor classes to beans within the ejb-jar file or .war file.
 It consists of :

 - An optional description.
 - The name of an ejb within the module or the wildcard value "*",
 which is used to define interceptors that are bound to all
 beans in the ejb-jar file or .war file.
 - A list of interceptor classes that are bound to the contents of
 the ejb-name element or a specification of the total ordering
 over the interceptors defined for the given level and above.
 - An optional exclude-default-interceptors element. If set to true,
 specifies that default interceptors are not to be applied to
 a bean-class and/or business method.
 - An optional exclude-class-interceptors element. If set to true,
 specifies that class interceptors are not to be applied to
 a business method.
 - An optional set of method elements for describing the name/params
 of a method-level interceptor.

 Interceptors bound to all classes using the wildcard syntax
 "*" are default interceptors for the components in the ejb-jar file or .war file.
 In addition, interceptors may be bound at the level of the bean
 class (class-level interceptors) or business methods (method-level
 interceptors).

 The binding of interceptors to classes is additive. If interceptors
 are bound at the class-level and/or default-level as well as the
 method-level, both class-level and/or default-level as well as

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 345

 method-level will apply.

 The method-name element may be used to bind a constructor-level
 interceptor using the unqualified name of the bean class as the value;
 the optional method-params elements identify the constructor if a bean
 class has a constructor annotated with the Inject annotation in addition
 to a no-arg constructor.

 There are four possible styles of the interceptor element syntax :

 1.
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 </interceptor-binding>

 Specifying the ejb-name as the wildcard value "*" designates
 default interceptors (interceptors that apply to all session and
 message-driven beans contained in the ejb-jar file or .war file).

 2.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 </interceptor-binding>

 This style is used to refer to interceptors associated with the
 specified enterprise bean(class-level interceptors).

 3.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method>
 <method-name>METHOD</method-name>
 </method>
 </interceptor-binding>

 This style is used to associate a method-level interceptor with
 the specified enterprise bean. If there are multiple methods
 with the same overloaded name, the element of this style refers
 to all the methods with the overloaded name. Method-level
 interceptors can only be associated with business methods of the
 bean class. Note that the wildcard value "*" cannot be used
 to specify method-level interceptors.

 4.
 <interceptor-binding>

13.5. Deployment Descriptor XML Schema

346 Jakarta® Enterprise Beans, Core Features Final

 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-N</method-param>
 </method-params>
 </method>
 </interceptor-binding>

 This style is used to associate a method-level interceptor with
 the specified method of the specified enterprise bean. This
 style is used to refer to a single method within a set of methods
 with an overloaded name. The values PARAM-1 through PARAM-N
 are the fully-qualified Java types of the method's input parameters
 (if the method has no input arguments, the method-params element
 contains no method-param elements). Arrays are specified by the
 array element's type, followed by one or more pair of square
 brackets (e.g. int[][]).

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="jakartaee:string"/>
 <xsd:choice>
 <xsd:element name="interceptor-class"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-order"
 type="jakartaee:interceptor-orderType"
 minOccurs="1"/>
 </xsd:choice>
 <xsd:element name="exclude-default-interceptors"
 type="jakartaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="exclude-class-interceptors"
 type="jakartaee:true-falseType"
 minOccurs="0"/>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 347

 <xsd:element name="method"
 type="jakartaee:named-methodType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptor-orderType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptor-orderType element describes a total ordering
 of interceptor classes.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="interceptor-class"
 type="jakartaee:fully-qualified-classType"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="named-methodType">
 <xsd:sequence>
 <xsd:element name="method-name"
 type="jakartaee:string"/>
 <xsd:element name="method-params"
 type="jakartaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

13.5. Deployment Descriptor XML Schema

348 Jakarta® Enterprise Beans, Core Features Final

 <xsd:complexType name="init-methodType">
 <xsd:sequence>
 <xsd:element name="create-method"
 type="jakartaee:named-methodType"/>
 <xsd:element name="bean-method"
 type="jakartaee:named-methodType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="remove-methodType">
 <xsd:sequence>
 <xsd:element name="bean-method"
 type="jakartaee:named-methodType"/>
 <xsd:element name="retain-if-exception"
 type="jakartaee:true-falseType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-driven-beanType">
 <xsd:annotation>
 <xsd:documentation>

 The message-driven element declares a message-driven
 bean. The declaration consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name.
 - a name assigned to the enterprise bean in
 the deployment descriptor
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of destination from which this message-driven bean
 should consume. This element is not required to be supported
 by all implementations. Any use of this element is non-portable.
 - the message-driven bean's implementation class

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 349

 - an optional declaration of the bean's messaging
 type
 - an optional declaration of the bean's timeout method for
 handling programmatically created timers
 - an optional declaration of timers to be automatically created at
 deployment time
 - the optional message-driven bean's transaction management
 type. If it is not defined, it is defaulted to Container.
 - an optional declaration of the bean's
 message-destination-type
 - an optional declaration of the bean's
 message-destination-link
 - an optional declaration of the message-driven bean's
 activation configuration properties
 - an optional list of the message-driven bean class and/or
 superclass around-invoke methods.
 - an optional list of the message-driven bean class and/or
 superclass around-timeout methods.
 - an optional declaration of the bean's environment
 entries
 - an optional declaration of the bean's enterprise bean references
 - an optional declaration of the bean's local enterprise bean
 references
 - an optional declaration of the bean's web service
 references
 - an optional declaration of the security role
 references
 - an optional declaration of the security
 identity to be used for the execution of the bean's
 methods
 - an optional declaration of the bean's
 resource manager connection factory
 references
 - an optional declaration of the bean's resource
 environment references.
 - an optional declaration of the bean's message
 destination references

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="jakartaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="jakartaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="jakartaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="ejb-class"

13.5. Deployment Descriptor XML Schema

350 Jakarta® Enterprise Beans, Core Features Final

 type="jakartaee:ejb-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-class element specifies the fully qualified name
 of the bean class for this ejb. It is required unless
 there is a component-defining annotation for the same
 ejb-name.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="messaging-type"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The messaging-type element specifies the message
 listener interface of the message-driven bean.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timeout-method"
 type="jakartaee:named-methodType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The timeout-method element specifies the method that
 will receive callbacks for programmatically
 created timers.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timer"
 type="jakartaee:timerType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="transaction-type"
 type="jakartaee:transaction-typeType"
 minOccurs="0"/>
 <xsd:element name="message-destination-type"
 type="jakartaee:message-destination-typeType"
 minOccurs="0"/>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 351

 <xsd:element name="message-destination-link"
 type="jakartaee:message-destination-linkType"
 minOccurs="0"/>
 <xsd:element name="activation-config"
 type="jakartaee:activation-configType"
 minOccurs="0"/>
 <xsd:element name="around-invoke"
 type="jakartaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="around-timeout"
 type="jakartaee:around-timeoutType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="jakartaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="security-role-ref"
 type="jakartaee:security-role-refType"
 minOccurs="0"
 maxOccurs="unbounded">
 </xsd:element>
 <xsd:element name="security-identity"
 type="jakartaee:security-identityType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="methodType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The methodType is used to denote a method of an enterprise
 bean. The method may be any of the following or a set of
 any of the following methods may be designated:
 business interface method
 home interface method
 component interface method
 web service endpoint interface method
 no-interface view method
 singleton session bean lifecycle callback method
 stateful session bean lifecycle callback method (see
 limitations)
 timeout callback method
 message-driven bean message listener method

13.5. Deployment Descriptor XML Schema

352 Jakarta® Enterprise Beans, Core Features Final

 The ejb-name element must be the name of one of the enterprise
 beans declared in the deployment descriptor.
 The optional method-intf element allows distinguishing between a
 method with the same signature that is multiply defined
 across any of the above.
 The method-name element specifies the method name.
 The optional method-params elements identify a single method
 among multiple methods with an overloaded method name.

 There are three possible styles of using methodType element
 within a method element:

 1.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>

 This style is used to refer to all of the following methods
 of the specified enterprise bean:
 business interface methods
 home interface methods
 component interface methods
 web service endpoint interface methods
 no-interface view methods
 singleton session bean lifecycle callback methods
 timeout callback methods
 message-driven bean message listener method

 This style may also be used in combination with the
 method-intf element that contains LifecycleCallback as
 the value to specify transaction attributes of a stateful
 session bean PostConstruct, PreDestroy, PrePassivate,
 and PostActivate lifecycle callback methods or to override
 transaction attributes of a singleton session bean
 PostConstruct and PreDestroy lifecycle callback methods.

 2.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 </method>

 This style is used to refer to the specified method of
 the specified enterprise bean. If there are multiple
 methods with the same overloaded name, the element of
 this style refers to all the methods with the overloaded

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 353

 name.

 This style may be used to refer to stateful session bean
 PostConstruct, PreDestroy, PrePassivate, and PostActivate
 lifecycle callback methods to specify their transaction
 attributes if any of the following is true:
 there is only one method with this name in the specified
 enterprise bean
 all overloaded methods with this name in the specified
 enterprise bean are lifecycle callback methods
 method-intf element is specified and it contains
 LifecycleCallback as the value

 3.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-n</method-param>
 </method-params>
 </method>

 This style is used to refer to a single method within a
 set of methods with an overloaded name. PARAM-1 through
 PARAM-n are the fully-qualified Java types of the
 method's input parameters (if the method has no input
 arguments, the method-params element contains no
 method-param elements). Arrays are specified by the
 array element's type, followed by one or more pair of
 square brackets (e.g. int[][]).
 If a method with the same name and signature is defined
 on more than one interface of an enterprise bean, this
 style refers to all those methods.

 Examples:

 Style 1: The following method element refers to all of the
 following methods of the EmployeeService bean:
 no interface view methods
 business interface methods
 home interface methods
 component business interface methods
 singleton session bean lifecycle callback methods, if any
 timeout callback methods
 web service endpoint interface methods

13.5. Deployment Descriptor XML Schema

354 Jakarta® Enterprise Beans, Core Features Final

 message-driven bean message listener methods (if the bean
 a message-driven bean)

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>

 Style 2: The following method element refers to all the
 create methods of the EmployeeService bean's home
 interface(s).

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>create</method-name>
 </method>

 Style 3: The following method element refers to the
 create(String firstName, String LastName) method of the
 EmployeeService bean's home interface(s).

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 The following example illustrates a Style 3 element with
 more complex parameter types. The method
 foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
 mypackage.MyClass[][] myclaar) would be specified as:

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>foobar</method-name>
 <method-params>
 <method-param>char</method-param>
 <method-param>int</method-param>
 <method-param>int[]</method-param>
 <method-param>mypackage.MyClass</method-param>
 <method-param>mypackage.MyClass[][]</method-param>
 </method-params>
 </method>

 The optional method-intf element can be used when it becomes

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 355

 necessary to differentiate between a method that is defined
 multiple times with the same name and signature across any
 of the following methods of an enterprise bean:
 business interface methods
 home interface methods
 component interface methods
 web service endpoint methods
 no-interface view methods
 singleton or stateful session bean lifecycle callback methods
 timeout callback methods
 message-driven bean message listener methods

 However, if the same method is a method of both the local
 business interface, and the local component interface,
 the same attribute applies to the method for both interfaces.
 Likewise, if the same method is a method of both the remote
 business interface and the remote component interface, the same
 attribute applies to the method for both interfaces.

 For example, the method element

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 can be used to differentiate the create(String, String)
 method defined in the remote interface from the
 create(String, String) method defined in the remote home
 interface, which would be defined as

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 and the create method that is defined in the local home
 interface which would be defined as

13.5. Deployment Descriptor XML Schema

356 Jakarta® Enterprise Beans, Core Features Final

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>LocalHome</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 The method-intf element can be used with all three Styles
 of the method element usage. For example, the following
 method element example could be used to refer to all the
 methods of the EmployeeService bean's remote home interface
 and the remote business interface.

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>*</method-name>
 </method>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="jakartaee:ejb-nameType"/>
 <xsd:element name="method-intf"
 type="jakartaee:method-intfType"
 minOccurs="0">
 </xsd:element>
 <xsd:element name="method-name"
 type="jakartaee:method-nameType"/>
 <xsd:element name="method-params"
 type="jakartaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 357

<!-- ** -->

 <xsd:complexType name="method-intfType">
 <xsd:annotation>
 <xsd:documentation>

 The method-intf element allows a method element to
 differentiate between the methods with the same name and
 signature that are multiply defined across the home and
 component interfaces (e.g, in both an enterprise bean's
 remote and local interfaces or in both an enterprise bean's
 home and remote interfaces, etc.); the component and web
 service endpoint interfaces, and so on.

 Local applies to the local component interface, local business
 interfaces, and the no-interface view.

 Remote applies to both remote component interface and the remote
 business interfaces.

 ServiceEndpoint refers to methods exposed through a web service
 endpoint.

 Timer refers to the bean's timeout callback methods.

 MessageEndpoint refers to the methods of a message-driven bean's
 message-listener interface.

 LifecycleCallback refers to the PostConstruct and PreDestroy
 lifecycle callback methods of a singleton session bean and
 to the PostConstruct, PreDestroy, PrePassivate, and PostActivate
 lifecycle callback methods of a stateful session bean.

 The method-intf element must be one of the following:

 Home
 Remote
 LocalHome
 Local
 ServiceEndpoint
 Timer
 MessageEndpoint
 LifecycleCallback

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">

13.5. Deployment Descriptor XML Schema

358 Jakarta® Enterprise Beans, Core Features Final

 <xsd:enumeration value="Home"/>
 <xsd:enumeration value="Remote"/>
 <xsd:enumeration value="LocalHome"/>
 <xsd:enumeration value="Local"/>
 <xsd:enumeration value="ServiceEndpoint"/>
 <xsd:enumeration value="Timer"/>
 <xsd:enumeration value="MessageEndpoint"/>
 <xsd:enumeration value="LifecycleCallback"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-nameType">
 <xsd:annotation>
 <xsd:documentation>

 The method-nameType contains a name of an enterprise
 bean method or the asterisk (*) character. The asterisk is
 used when the element denotes all the methods of an
 enterprise bean's client view interfaces.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-paramsType">
 <xsd:annotation>
 <xsd:documentation>

 The method-paramsType defines a list of the
 fully-qualified Java type names of the method parameters.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method-param"
 type="jakartaee:java-typeType"
 minOccurs="0"
 maxOccurs="unbounded">

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 359

 <xsd:annotation>
 <xsd:documentation>

 The method-param element contains a primitive
 or a fully-qualified Java type name of a method
 parameter.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-permissionType">
 <xsd:annotation>
 <xsd:documentation>

 The method-permissionType specifies that one or more
 security roles are allowed to invoke one or more enterprise
 bean methods. The method-permissionType consists of an
 optional description, a list of security role names or an
 indicator to state that the method is unchecked for
 authorization, and a list of method elements.

 Except as noted below the security roles used in the
 method-permissionType must be defined in the security-role
 elements of the deployment descriptor, and the methods
 must be methods defined in the enterprise bean's no-interface
 view, business, home, component and/or web service endpoint
 interfaces.

 If the role name "**" is included in the list of allowed
 roles, and the application has not defined in its deployment
 descriptor an application security role with this name,
 then the list of allowed roles includes every and any
 authenticated user.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"

13.5. Deployment Descriptor XML Schema

360 Jakarta® Enterprise Beans, Core Features Final

 maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="role-name"
 type="jakartaee:role-nameType"
 maxOccurs="unbounded"/>
 <xsd:element name="unchecked"
 type="jakartaee:emptyType">
 <xsd:annotation>
 <xsd:documentation>

 The unchecked element specifies that a method is
 not checked for authorization by the container
 prior to invocation of the method.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 <xsd:element name="method"
 type="jakartaee:methodType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="multiplicityType">
 <xsd:annotation>
 <xsd:documentation>

 The multiplicityType describes the multiplicity of the
 role that participates in a relation.

 The value must be one of the two following:

 One
 Many

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="One"/>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 361

 <xsd:enumeration value="Many"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="persistence-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The persistence-typeType specifies an entity bean's persistence
 management type.

 The persistence-type element must be one of the two following:

 Bean
 Container

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="queryType">
 <xsd:annotation>
 <xsd:documentation>

 The queryType defines a finder or select
 query. It contains
 - an optional description of the query
 - the specification of the finder or select
 method it is used by
 - an optional specification of the result type
 mapping, if the query is for a select method
 and entity objects are returned.
 - the Enterprise Beans QL query string that defines the query.

13.5. Deployment Descriptor XML Schema

362 Jakarta® Enterprise Beans, Core Features Final

 Queries that are expressible in Enterprise Beans QL must use the ejb-ql
 element to specify the query. If a query is not expressible
 in Enterprise Beans QL, the description element should be used to
 describe the semantics of the query and the ejb-ql element
 should be empty.

 The result-type-mapping is an optional element. It can only
 be present if the query-method specifies a select method
 that returns entity objects. The default value for the
 result-type-mapping element is "Local".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"/>
 <xsd:element name="query-method"
 type="jakartaee:query-methodType"/>
 <xsd:element name="result-type-mapping"
 type="jakartaee:result-type-mappingType"
 minOccurs="0"/>
 <xsd:element name="ejb-ql"
 type="jakartaee:xsdStringType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="query-methodType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The query-method specifies the method for a finder or select
 query.

 The method-name element specifies the name of a finder or select
 method in the entity bean's implementation class.

 Each method-param must be defined for a query-method using the
 method-params element.

 It is used by the query-method element.

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 363

 Example:

 <query>
 <description>Method finds large orders</description>
 <query-method>
 <method-name>findLargeOrders</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(o) FROM Order o
 WHERE o.amount > 1000
 </ejb-ql>
 </query>

 Support for entity beans is optional as of Enterprise Beans 3.2.

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="method-name"
 type="jakartaee:method-nameType"/>
 <xsd:element name="method-params"
 type="jakartaee:method-paramsType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="relationship-role-sourceType">
 <xsd:annotation>
 <xsd:documentation>

 The relationship-role-sourceType designates the source of a
 role that participates in a relationship. A
 relationship-role-sourceType is used by
 relationship-role-source elements to uniquely identify an
 entity bean.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"

13.5. Deployment Descriptor XML Schema

364 Jakarta® Enterprise Beans, Core Features Final

 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="jakartaee:ejb-nameType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="relationshipsType">
 <xsd:annotation>
 <xsd:documentation>

 The relationshipsType describes the relationships in
 which entity beans with container-managed persistence
 participate. The relationshipsType contains an optional
 description; and a list of ejb-relation elements, which
 specify the container managed relationships.

 Support for entity beans is optional as of Enterprise Beans 3.2.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relation"
 type="jakartaee:ejb-relationType"
 maxOccurs="unbounded">
 <xsd:unique name="role-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationship-role-name contains the name of a
 relationship role. The name must be unique within
 a relationship, but can be reused in different
 relationships.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath=".//jakartaee:ejb-relationship-role-name"/>
 <xsd:field xpath="."/>

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 365

 </xsd:unique>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="result-type-mappingType">
 <xsd:annotation>
 <xsd:documentation>

 The result-type-mappingType is used in the query element to
 specify whether an abstract schema type returned by a query
 for a select method is to be mapped to an EJBLocalObject or
 EJBObject type.

 The value must be one of the following:

 Local
 Remote

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="Local"/>
 <xsd:enumeration value="Remote"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-identityType">
 <xsd:annotation>
 <xsd:documentation>

 The security-identityType specifies whether the caller's
 security identity is to be used for the execution of the
 methods of the enterprise bean or whether a specific run-as
 identity is to be used. It contains an optional description
 and a specification of the security identity to be used.

 </xsd:documentation>

13.5. Deployment Descriptor XML Schema

366 Jakarta® Enterprise Beans, Core Features Final

 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="use-caller-identity"
 type="jakartaee:emptyType">
 <xsd:annotation>
 <xsd:documentation>

 The use-caller-identity element specifies that
 the caller's security identity be used as the
 security identity for the execution of the
 enterprise bean's methods.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="run-as"
 type="jakartaee:run-asType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="session-beanType">
 <xsd:annotation>
 <xsd:documentation>

 The session-beanType declares an session bean. The
 declaration consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name
 - a name assigned to the enterprise bean
 in the deployment description
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of the session bean's remote home/business interface.
 This element is not required to be supported by all

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 367

 implementations. Any use of this element is non-portable.
 - the names of all the remote or local business interfaces,
 if any
 - the names of the session bean's remote home and
 remote interfaces, if any
 - the names of the session bean's local home and
 local interfaces, if any
 - an optional declaration that this bean exposes a
 no-interface view
 - the name of the session bean's web service endpoint
 interface, if any
 - the session bean's implementation class
 - the session bean's state management type
 - an optional declaration of a stateful session bean's timeout value
 - an optional declaration of the session bean's timeout method for
 handling programmatically created timers
 - an optional declaration of timers to be automatically created at
 deployment time
 - an optional declaration that a Singleton bean has eager
 initialization
 - an optional declaration of a Singleton/Stateful bean's concurrency
 management type
 - an optional declaration of the method locking metadata
 for a Singleton with container managed concurrency
 - an optional declaration of the other Singleton beans in the
 application that must be initialized before this bean
 - an optional declaration of the session bean's asynchronous
 methods
 - the optional session bean's transaction management type.
 If it is not present, it is defaulted to Container.
 - an optional declaration of a stateful session bean's
 afterBegin, beforeCompletion, and/or afterCompletion methods
 - an optional list of the session bean class and/or
 superclass around-invoke methods.
 - an optional list of the session bean class and/or
 superclass around-timeout methods.
 - an optional declaration of the bean's
 environment entries
 - an optional declaration of the bean's enterprise bean references
 - an optional declaration of the bean's local enterprise bean
 references
 - an optional declaration of the bean's web
 service references
 - an optional declaration of the security role
 references
 - an optional declaration of the security identity
 to be used for the execution of the bean's methods
 - an optional declaration of the bean's resource

13.5. Deployment Descriptor XML Schema

368 Jakarta® Enterprise Beans, Core Features Final

 manager connection factory references
 - an optional declaration of the bean's resource
 environment references.
 - an optional declaration of the bean's message
 destination references
 - an optional specification as to whether the stateful
 session bean is passivation capable or not. If not
 specified, the bean is assumed to be passivation capable

 The elements that are optional are "optional" in the sense
 that they are omitted when if lists represented by them are
 empty.

 The service-endpoint element may only be specified if the
 bean is a stateless session bean.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="jakartaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="jakartaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="jakartaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="home"
 type="jakartaee:homeType"
 minOccurs="0"/>
 <xsd:element name="remote"
 type="jakartaee:remoteType"
 minOccurs="0"/>
 <xsd:element name="local-home"
 type="jakartaee:local-homeType"
 minOccurs="0"/>
 <xsd:element name="local"
 type="jakartaee:localType"
 minOccurs="0"/>
 <xsd:element name="business-local"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="business-remote"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="local-bean"
 type="jakartaee:emptyType"
 minOccurs="0">

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 369

 <xsd:annotation>
 <xsd:documentation>

 The local-bean element declares that this
 session bean exposes a no-interface Local client view.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="service-endpoint"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The service-endpoint element contains the
 fully-qualified name of the enterprise bean's web
 service endpoint interface. The service-endpoint
 element may only be specified for a stateless
 session bean. The specified interface must be a
 valid Jakarta XML RPC service endpoint interface.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-class"
 type="jakartaee:ejb-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-class element specifies the fully qualified name
 of the bean class for this ejb. It is required unless
 there is a component-defining annotation for the same
 ejb-name.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="session-type"
 type="jakartaee:session-typeType"
 minOccurs="0"/>
 <xsd:element name="stateful-timeout"
 type="jakartaee:stateful-timeoutType"
 minOccurs="0"/>
 <xsd:element name="timeout-method"
 type="jakartaee:named-methodType"
 minOccurs="0">

13.5. Deployment Descriptor XML Schema

370 Jakarta® Enterprise Beans, Core Features Final

 <xsd:annotation>
 <xsd:documentation>

 The timeout-method element specifies the method that
 will receive callbacks for programmatically
 created timers.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timer"
 type="jakartaee:timerType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="init-on-startup"
 type="jakartaee:true-falseType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The init-on-startup element specifies that a Singleton
 bean has eager initialization.
 This element can only be specified for singleton session
 beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="concurrency-management-type"
 type="jakartaee:concurrency-management-typeType"
 minOccurs="0"/>
 <xsd:element name="concurrent-method"
 type="jakartaee:concurrent-methodType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="depends-on"
 type="jakartaee:depends-onType"
 minOccurs="0"/>
 <xsd:element name="init-method"
 type="jakartaee:init-methodType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The init-method element specifies the mappings for
 Enterprise Beans 2.x style create methods for an Enterprise Beans 3.x bean.
 This element can only be specified for stateful

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 371

 session beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="remove-method"
 type="jakartaee:remove-methodType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The remove-method element specifies the mappings for
 Enterprise Beans 2.x style remove methods for an Enterprise Beans 3.x bean.
 This element can only be specified for stateful
 session beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="async-method"
 type="jakartaee:async-methodType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="transaction-type"
 type="jakartaee:transaction-typeType"
 minOccurs="0"/>
 <xsd:element name="after-begin-method"
 type="jakartaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="before-completion-method"
 type="jakartaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="after-completion-method"
 type="jakartaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="around-invoke"
 type="jakartaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="around-timeout"
 type="jakartaee:around-timeoutType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="jakartaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="post-activate"
 type="jakartaee:lifecycle-callbackType"
 minOccurs="0"

13.5. Deployment Descriptor XML Schema

372 Jakarta® Enterprise Beans, Core Features Final

 maxOccurs="unbounded"/>
 <xsd:element name="pre-passivate"
 type="jakartaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="security-role-ref"
 type="jakartaee:security-role-refType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="security-identity"
 type="jakartaee:security-identityType"
 minOccurs="0"/>
 <xsd:element name="passivation-capable"
 type="xsd:boolean"
 default="true"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The passivation-capable element specifies whether the
 stateful session bean is passivation capable or not.
 If not specified, the bean is assumed to be passivation
 capable.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="session-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The session-typeType describes whether the session bean is a
 singleton, stateful or stateless session. It is used by
 session-type elements.

 The value must be one of the three following:

 Singleton
 Stateful
 Stateless

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 373

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="Singleton"/>
 <xsd:enumeration value="Stateful"/>
 <xsd:enumeration value="Stateless"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="stateful-timeoutType">
 <xsd:annotation>
 <xsd:documentation>

 The stateful-timeoutType represents the amount of time
 a stateful session bean can be idle(not receive any client
 invocations) before it is eligible for removal by the container.

 A timeout value of 0 means the bean is immediately eligible for removal.

 A timeout value of -1 means the bean will never be removed due to timeout.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="timeout"
 type="jakartaee:xsdIntegerType"/>
 <xsd:element name="unit"
 type="jakartaee:time-unit-typeType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="time-unit-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The time-unit-typeType represents a time duration at a given
 unit of granularity.

13.5. Deployment Descriptor XML Schema

374 Jakarta® Enterprise Beans, Core Features Final

 The time unit type must be one of the following :

 Days
 Hours
 Minutes
 Seconds
 Milliseconds
 Microseconds
 Nanoseconds

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="Days"/>
 <xsd:enumeration value="Hours"/>
 <xsd:enumeration value="Minutes"/>
 <xsd:enumeration value="Seconds"/>
 <xsd:enumeration value="Milliseconds"/>
 <xsd:enumeration value="Microseconds"/>
 <xsd:enumeration value="Nanoseconds"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="timer-scheduleType">
 <xsd:sequence>
 <xsd:element name="second"
 type="jakartaee:string"
 minOccurs="0"/>
 <xsd:element name="minute"
 type="jakartaee:string"
 minOccurs="0"/>
 <xsd:element name="hour"
 type="jakartaee:string"
 minOccurs="0"/>
 <xsd:element name="day-of-month"
 type="jakartaee:string"
 minOccurs="0"/>
 <xsd:element name="month"
 type="jakartaee:string"
 minOccurs="0"/>
 <xsd:element name="day-of-week"
 type="jakartaee:string"

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 375

 minOccurs="0"/>
 <xsd:element name="year"
 type="jakartaee:string"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="timerType">
 <xsd:annotation>
 <xsd:documentation>

 The timerType specifies an enterprise bean timer. Each
 timer is automatically created by the container upon
 deployment. Timer callbacks occur based on the
 schedule attributes. All callbacks are made to the
 timeout-method associated with the timer.

 A timer can have an optional start and/or end date. If
 a start date is specified, it takes precedence over the
 associated timer schedule such that any matching
 expirations prior to the start time will not occur.
 Likewise, no matching expirations will occur after any
 end date. Start/End dates are specified using the
 XML Schema dateTime type, which follows the ISO-8601
 standard for date(and optional time-within-the-day)
 representation.

 An optional flag can be used to control whether
 this timer has persistent(true) delivery semantics or
 non-persistent(false) delivery semantics. If not specified,
 the value defaults to persistent(true).

 A time zone can optionally be associated with a timer.
 If specified, the timer's schedule is evaluated in the context
 of that time zone, regardless of the default time zone in which
 the container is executing. Time zones are specified as an
 ID string. The set of required time zone IDs is defined by
 the Zone Name(TZ) column of the public domain zoneinfo database.

 An optional info string can be assigned to the timer and
 retrieved at runtime through the Timer.getInfo() method.

 The timerType can only be specified on stateless session

13.5. Deployment Descriptor XML Schema

376 Jakarta® Enterprise Beans, Core Features Final

 beans, singleton session beans, and message-driven beans.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="schedule"
 type="jakartaee:timer-scheduleType"/>
 <xsd:element name="start"
 type="xsd:dateTime"
 minOccurs="0"/>
 <xsd:element name="end"
 type="xsd:dateTime"
 minOccurs="0"/>
 <xsd:element name="timeout-method"
 type="jakartaee:named-methodType"/>
 <xsd:element name="persistent"
 type="jakartaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="timezone"
 type="jakartaee:string"
 minOccurs="0"/>
 <xsd:element name="info"
 type="jakartaee:string"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="trans-attributeType">
 <xsd:annotation>
 <xsd:documentation>

 The trans-attributeType specifies how the container must
 manage the transaction boundaries when delegating a method
 invocation to an enterprise bean's business method.

 The value must be one of the following:

 NotSupported
 Supports

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 377

 Required
 RequiresNew
 Mandatory
 Never

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="NotSupported"/>
 <xsd:enumeration value="Supports"/>
 <xsd:enumeration value="Required"/>
 <xsd:enumeration value="RequiresNew"/>
 <xsd:enumeration value="Mandatory"/>
 <xsd:enumeration value="Never"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="transaction-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The transaction-typeType specifies an enterprise bean's
 transaction management type.

 The transaction-type must be one of the two following:

 Bean
 Container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

</xsd:schema>

[87] The concurrency-management-type Container may be specified for stateful session beans, but doing so has no

13.5. Deployment Descriptor XML Schema

378 Jakarta® Enterprise Beans, Core Features Final

impact on the semantics of concurrency management for such beans.

13.5. Deployment Descriptor XML Schema

Final Jakarta® Enterprise Beans, Core Features 379

Chapter 14. Packaging
The ejb-jar file is the standard format for the packaging of enterprise beans. Enterprise beans can also
be packaged within a web application module (.war file). The ejb-jar file or .war file format is used to
package un-assembled enterprise beans (the Bean Provider’s output), and to package assembled
applications (the Application Assembler’s output).

14.1. Overview
The ejb-jar file and .war file formats serve as the contract between the Bean Provider and the
Application Assembler, and between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typically do
not contain application assembly instructions. The ejb-jar file produced by an Application Assembler
(which can be the same person or organization as the Bean Provider) contains one or more enterprise
beans, plus application assembly information describing how the enterprise beans are combined into a
single application deployment unit.

A .war file is not required to contain any enterprise beans. A .war file produced by a Bean Provider
contains one or more enterprise beans that typically do not contain application assembly instructions.
A .war file produced by an Application Assembler (which can be the same person or organization as
the Bean Provider) contains one or more enterprise beans, plus application assembly information
describing how the enterprise beans are combined into a single application deployment unit.

An ejb-jar file is designed specifically for the packaging of enterprise beans. An ejb-jar file that is
packaged stand-alone or within an .ear file constitutes a Jakarta EE module.

While the use of an ejb-jar file within a .war file is supported by this specification, an ejb-jar file
within a .war file does not constitute a Jakarta EE module. See Enterprise Beans Packaged in a .war
file.

14.2. Deployment Descriptor
The Enterprise Beans deployment descriptor is optional in either packaging scenario. If a deployment
descriptor is provided it must conform to the format defined in <<a5804>.

In a .war file, the deployment descriptor is stored with the name WEB-INF/ejb-jar.xml.

In an ejb-jar file that is packaged stand-alone or within an .ear file, the deployment descriptor is stored
with the name META-INF/ejb-jar.xml. If the enterprise beans are contained in an ejb-jar file packaged
within a .war file, the deployment descriptor is stored with the name WEB-INF/ejb-jar.xml. When
enterprise beans are packaged within a .war, the ejb-jar file does not constitute a separate module, and
there can portably be only one ejb-jar.xml file. See Enterprise Beans Packaged in a .war file.

14.1. Overview

380 Jakarta® Enterprise Beans, Core Features Final

14.3. Packaging Requirements
The ejb-jar file or .war file must contain, either by inclusion or by reference, the class files of each
enterprise bean as follows:

• The enterprise bean class.

• The enterprise bean business interfaces, web service endpoint interfaces, and home and
component interfaces.

• Interceptor classes.

We say that a jar file contains a second file "by reference" if the second file is named in the Class-Path
attribute in the Manifest file of the referencing jar file or is contained (either by inclusion or by reference)
in another jar file that is named in the Class-Path attribute in the Manifest file of the referencing jar file.

The ejb-jar file or .war file must also contain, either by inclusion or by reference, the class files for all
the classes and interfaces that each enterprise bean class and the business interfaces, home interfaces,
component interfaces, and/or web service endpoints depend on, except Jakarta EE and Java SE classes.
This includes their superclasses and superinterfaces, dependent classes, and the classes and interfaces
used as method parameters, results, and exceptions.

The Application Assembler must not package the stubs of the EJBHome and EJBObject interfaces in the
ejb-jar file or .war file. This includes the stubs for the enterprise beans whose implementations are
provided in the ejb-jar file or .war file as well as the referenced enterprise beans. Generating the stubs
is the responsibility of the container. The stubs are typically generated by the Container Provider’s
deployment tools for each class that extends the EJBHome or EJBObject interfaces, or they may be
generated by the container at runtime.

14.4. Enterprise Beans Packaged in a .war file
An enterprise bean class with a component-defining annotation defines an enterprise bean component
when packaged within the WEB-INF/classes directory or within a jar file within the WEB-INF/lib
directory. An enterprise bean can also be defined via the WEB-INF/ejb-jar.xml deployment descriptor.

A .war file may contain enterprise bean classes in a combination of classes within the WEB-INF/classes
directory and one or more jar files within the WEB-INF/lib directory.

A "ejb-jar" file in the WEB-INF/lib directory that contains enterprise beans is not considered an
independent Jakarta EE "module" in the way that a .war file, stand-alone ejb-jar file, or an .ear-level
ejb-jar file is considered a module. Such an "ejb-jar" file does not define its own module name or its
own namespace for ejb-names, environment dependencies, persistence units, etc. All such
namespaces are scoped to the enclosing .war file. In that sense, the packaging of enterprise bean
classes in an "ejb-jar" file in the WEB-INF/lib directory is merely a convenience. It is semantically
equivalent to packaging the classes within WEB-INF/classes directory.

14.3. Packaging Requirements

Final Jakarta® Enterprise Beans, Core Features 381

A .war file may contain an ejb-jar.xml file. If present, the ejb-jar.xml is packaged as WEB-INF/ejb-
jar.xml. If an ejb-jar.xml is present, it applies to all enterprise beans defined by the .war file,
independently of whether they are packaged with the WEB-INF/classes directory or in a jar file within
WEB-INF/lib directory. The packaging of an ejb-jar.xml file anywhere else within the .war file is not
portable and may result in a deployment error.

14.4.1. Class Loading

Enterprise beans (and any related classes) packaged in a .war file have the same class loading
requirements as other non-enterprise bean classes packaged in a .war file. This means, for example,
that a servlet packaged within a .war file is guaranteed to have visibility to an enterprise bean
component packaged within the same .war file, and vice versa. Detailed class loading requirements for
web modules are covered in the Jakarta EE Platform specification [18].

14.4.2. Component Environment

In a .war file, there is a single component naming environment shared between all the components
(web, enterprise bean, etc.) defined by the module. Each enterprise bean defined in the .war file shares
this single component environment namespace with all other enterprise beans defined by the .war file
and with all other web components defined by the .war file.

The Bean Provider should be aware of this name scoping behavior when selecting names of
environment dependencies for enterprise beans packaged within a .war file. Unlike enterprise beans
packaged in an ejb-jar file outside a .war file, the names of environment entries defined by an
enterprise bean inside a .war file can clash with names defined by other components. Likewise,
enterprise beans packaged in a .war file have visiblity to all environment entries defined by any other
components in the .war file, including any entries defined within the web.xml file. This is also true of the
advanced case in which the ejb-jar.xml file is used to define multiple bean components based on the
same bean class. Extra caution should be used when configuring environment dependencies for such
bean components.

14.4.3. Visibility of the Local Client View

The local client view (including the no-interface view) of an enterprise bean component defined within
a .war file is only required to be accessible to components within the same .war file. Applications
needing access to the local client view of an enterprise bean from a different module in the same
application should use an ejb-jar file outside the .war file to define the enterprise bean that exposes the
local client view.

14.4.4. Ejb-names

A .war file has a single namespace for the ejb-names of any enterprise beans it defines. This single ejb-
name namespace applies to all enterprise beans defined in the .war file, regardless of where in the .war
file the enterprise beans are defined and regardless of whether they are defined by means of the ejb-
jar.xml deployment descriptor or by annotations.

14.4. Enterprise Beans Packaged in a .war file

382 Jakarta® Enterprise Beans, Core Features Final

14.4.5. Example

package com.acme;

@Stateless
public class FooBean {
 public void foo() { ... }
}

FooBean is a stateless session bean with a component-defining annotation and a no-interface view. It is
packaged in a .war file under a WEB-INF/classes subdirectory corresponding to its package name. The
.war file also contains a Servlet.

webejb.war:
 WEB-INF/classes/com/acme/FooServlet.class
 WEB-INF/classes/com/acme/FooBean.class

14.5. Deployment Descriptor and Annotation Processing
The following sections describe the cases that the deployment tool must consider when deciding
whether to process annotations on the enterprise bean classes in a module.

14.5.1. Ejb-jar Deployment Descriptor and Annotation Processing

Ejb-jar Annotation Processing Requirements describes the requirements for determining when to
process annotations on the classes in a standalone ejb-jar file or an ejb-jar file packaged within an .ear
file. If the deployment descriptor is not included or is included but not marked metadata-complete, the
deployment tool will process annotations.

Table 16. Ejb-jar Annotation Processing Requirements

Deployment Descriptor metadata-complete? process annotations?

ejb-jar_2_1 or earlier N/A No

ejb-jar_3_x Yes No

ejb-jar_3_x No Yes

none N/A Yes

14.5.2. .war Deployment Descriptor and Annotation Processing

.war Annotation Processing Requirements for enterprise beans describes the requirements for
determining when to process annotations on the enterprise bean classes of a .war file. If the .war file
contains an ejb-jar.xml file, the deployment tool will process annotations unless the ejb-jar.xml has

14.5. Deployment Descriptor and Annotation Processing

Final Jakarta® Enterprise Beans, Core Features 383

been marked metadata-complete. If the .war file does not contain an ejb-jar.xml file, the deployment
tool will process annotations unless the web.xml is marked metadata-complete or its version is prior to
web-app_2_5.

Table 17. .war Annotation Processing Requirements for enterprise beans

ejb-jar.xml ejb-jar.xml
metadata-
complete?

web.xml web.xml
metadata-
complete?

process
annotations?

ejb-jar_3_x Yes N/A N/A No

ejb-jar_3_x No N/A N/A Yes

none N/A web-app_2_5 or
later

Yes No

none N/A web-app_2_5 or
later

No Yes

none N/A web-app_2_4 or
earlier

N/A No

none N/A none N/A Yes

14.6. The Client View and the ejb-client JAR File
The client view of an enterprise bean is comprised of the business interfaces, no-interface view, or
home and component interfaces of the referenced enterprise bean, and other classes that these
interfaces depend on, such as their superclasses and superinterfaces, the classes and interfaces used as
method parameters, results, and exceptions. The serializable application value classes, including the
classes which may be used as members of a collection in a remote method call to an enterprise bean,
are part of the client view. An example of an application value class might be an Address class used as a
parameter in a method call.

The ejb-jar file or .war file producer can create an ejb-client JAR file for the ejb-jar file or .war file. The
ejb-client JAR file contains all the class files that a client program needs to use the client view of the
enterprise beans that are contained in the ejb-jar file or .war file. If this option is used, it is the
responsibility of the Application Assembler to include all the classes necessary to comprise the client
view of an enterprise bean in the ejb-client JAR file.

The ejb-client JAR file is specified in the ejb-jar.xml deployment descriptor of the ejb-jar file or .war
file using the ejb-client-jar element. The value of the ejb-client-jar element is the path name
specifying the location of the ejb-client JAR file in the containing Jakarta EE Enterprise Application
Archive (.ear) file. The path name is relative to the location of the referencing ejb-jar file or .war file.

The Enterprise Beans specification does not specify whether an ejb-jar file or .war file should include
by copy or by reference the classes that are in an ejb-client JAR file, but they must be included either
one way or the other. If the by-copy approach is used, the producer simply includes all the class files in

14.6. The Client View and the ejb-client JAR File

384 Jakarta® Enterprise Beans, Core Features Final

the ejb-client JAR file also in the ejb-jar file or .war file. If the by-reference approach is used, the ejb-jar
file or .war file producer does not duplicate the content of the ejb-client JAR file in the ejb-jar file or
.war file, but instead uses a Manifest Class-Path entry in the ejb-jar file or .war file to specify that the
ejb-jar file or .war file depends on the ejb-client JAR at runtime. The use of the Class-Path entries in JAR
files and .war files is explained in the Jakarta EE Platform specification [18].

14.7. Requirements for Clients
The Application Assembler must construct the application to insure that the client view classes are
available to the client at runtime. The client of an enterprise bean may be another enterprise bean
packaged in the same ejb-jar or different ejb-jar file, another enterprise bean packaged in the same
.war file or different .war file, or the client may be another Jakarta EE component, such as a web
component.

When clients packaged in jar files refer to enterprise beans, the jar file that contains the client, e.g. an
ejb-jar file, should contain, either by inclusion or by reference, all the client view classes of the
referenced beans. The client view classes may have been packaged in an ejb-client JAR file. In other
words, the jar file that contains the client should contain one of the following:

• a reference to the ejb-client JAR file

• a reference to the ejb-jar file that contains the client view classes

• a copy of the client view classes

14.8. Example
In this example, the Bean Provider has chosen to package the enterprise bean client view classes in a
separate .jar file and to reference that .jar file from the other .jar files that need those classes. Those
classes are needed both by ejb2.jar, packaged in the same application as ejb1.jar, and by ejb3.jar,
packaged in a different application. Those classes are also needed by ejb1.jar itself because they
define the remote interface of the enterprise beans in ejb1.jar, and the Bean Provider has chosen the
by reference approach to making these classes available.

The deployment descriptor for ejb1.jar names the client view jar file in the ejb-client-jar element.
Because ejb2.jar requires these client view classes, it includes a Class-Path reference to
ejb1_client.jar.

The Class-Path mechanism must be used by components in app2.ear to reference the client view jar file
that corresponds to the enterprise beans packaged in ejb1.jar of app1.ear. Those enterprise beans are
referenced by enterprise beans in ejb3.jar. Note that the client view jar file must be included directly
in the app2.ear file.

14.7. Requirements for Clients

Final Jakarta® Enterprise Beans, Core Features 385

app1.ear:
 META-INF/application.xml
 ejb1.jar Class-Path: ejb1_client.jar
 deployment descriptor contains:
 <ejb-client-jar>ejb1_client.jar</ejb-client-jar>
 ejb1_client.jar
 ejb2.jar Class-Path: ejb1_client.jar

app2.ear:
 META-INF/application.xml
 ejb1_client.jar
 ejb3.jar Class-Path: ejb1_client.jar

14.8. Example

386 Jakarta® Enterprise Beans, Core Features Final

Chapter 15. Runtime Environment
This chapter defines the application programming interfaces (APIs) that a compliant Enterprise Beans
container must make available to the enterprise bean instances at runtime. These APIs can be used by
portable enterprise beans because the APIs are guaranteed to be available in all Enterprise Beans
containers.

The set of required APIs is divided into two categories: a complete set and a minimum set. The minimum
set is also referred to as "Enterprise Beans Lite". This reflects the ability of a Server Provider to provide
an Enterprise Beans container within a product that implements the Full Jakarta EE Platform or within
a subset profile such as the Jakarta EE Web Profile. The complete set is required within an
implementation of the Full Jakarta EE Platform. The minimum set must be supported within an
implementation of the Jakarta EE Web Profile. Profile requirements are described within the Jakarta
EE Platform specification [18].

The chapter also defines the restrictions that the Enterprise Beans Container Provider can impose on
the functionality that it provides to the enterprise beans. These restrictions are necessary to enforce
security and to allow the container to properly manage the runtime environment.

15.1. Enterprise Beans Lite and Other Enterprise Beans
API Groups
The Enterprise Beans API is comprised of a large feature set with support for implementing business
logic in a wide variety of enterprise applications. However, the full range of API contracts is not always
crucial for all runtime environments. In addition, the breadth of the full API can present challenges for
developers just getting started with the Enterprise Beans technology.

For these reasons this specification defines a minimal subset of the Enterprise Beans API known as
Enterprise Beans Lite. Enterprise Beans Lite is not a product. Rather, it is a proper subset of the full
Enterprise Beans API that includes a small, powerful selection of Enterprise Beans features suitable for
writing portable transactional business logic. The definition of Enterprise Beans Lite gives vendors an
option to implement only a portable subset of the Enterprise Beans API within their product. The
vastly reduced size of the feature set makes it suitable for inclusion in a wider range of Java products,
many of which have much smaller installation and runtime footprints than a typical full Jakarta EE
implementation.

An Enterprise Beans Lite application is merely an Enterprise Beans application whose Enterprise
Beans API usage falls within the Enterprise Beans Lite subset. There are no special APIs defined only
for Enterprise Beans Lite. Therefore, any Enterprise Beans Lite application can be deployed on any
Jakarta EE product that implements Enterprise Beans technology, whether that product supports
Enterprise Beans Lite or the full Enterprise Beans API.

As detailed in Enterprise Beans API Groups, the Enterprise Beans Lite API is composed of the following
subset of the Enterprise Beans API:

15.1. Enterprise Beans Lite and Other Enterprise Beans API Groups

Final Jakarta® Enterprise Beans, Core Features 387

• Stateless, stateful, and singleton session bean components only

◦ Local business interface and no-interface view only

• Container-managed transactions and bean-managed transactions

• Declarative and programmatic security

• Interceptors

• Local asynchronous session bean invocations

• Non-persistent Enterprise Beans Timer Service

• Deployment descriptor support (ejb-jar.xml)

Table 18. Enterprise Beans API Groups

GROUP CONTENT Full Enterprise Beans API

Enterprise Beans Lite COMPONENTS:

Session Beans (stateful, stateless,
singleton)

SESSION BEAN CLIENT VIEWS:

Local business interface

No-interface

SERVICES:

Interceptors

Non-persistent Enterprise Beans
Timer Service

Local asynchronous session
bean invocations

Container-managed transactions

Bean-managed transactions

Declarative and Programmatic
Security

PACKAGING:

Session beans packaged in a
.war file

Required

15.1. Enterprise Beans Lite and Other Enterprise Beans API Groups

388 Jakarta® Enterprise Beans, Core Features Final

GROUP CONTENT Full Enterprise Beans API

Message-Driven Beans COMPONENTS:

Message-driven Beans

DEPENDENCIES:

Standalone connector with
support for Message Inflow and
MessageEndpoint deployment

Required

Enterprise Beans 3.x Remote SESSION BEAN CLIENT VIEWS:

3.x Remote Business view

SERVICES:

Remote asynchronous session
bean invocations

Required

Persistent Enterprise Beans
Timer Service

SERVICES:

Persistent Enterprise Beans
Timer Service

Required

Jakarta XML Web Service
Endpoints

SESSION BEAN CLIENT VIEWS:

Jakarta XML Web Service
Endpoints

DEPENDENCIES:

Jakarta XML Web Services API

Required

Embeddable Enterprise Beans
Container

SERVICES:

Embeddable Enterprise Beans
Container

Optional

15.1. Enterprise Beans Lite and Other Enterprise Beans API Groups

Final Jakarta® Enterprise Beans, Core Features 389

GROUP CONTENT Full Enterprise Beans API

Enterprise Beans 2.x API COMPONENTS:

Session Beans

SESSION BEAN CLIENT VIEWS:

2.x Local and Remote Home and
Component views

SERVICES:

TimedObject interface

SessionSynchronization
interface

Optional

Entity Beans COMPONENTS:

2.x / 1.x CMP/BMP Entity Beans

SERVICES:

Enterprise Beans QL

Optional

15.1.1. Support for Other Enterprise Beans API Groups in an Enterprise Beans
Lite Container

An Enterprise Beans Lite container provider may support Enterprise Beans features in addition to the
"Enterprise Beans Lite" group defined in Enterprise Beans API Groups. If it does, the following rules
apply:

• If any feature in a group is supported, the whole group must be supported.

• Support for these features must adhere to the requirements of this specification.

• Except for the programmatic timers in the Persistent Enterprise Beans Timer Service group, the
Enterprise Beans Container must detect that an application depends on a feature that is not
supported and fail deployment of the application. A product may offer a deployment option to
force deployment of applications that use Enterprise Beans features not supported by the product.
Use of these features must fail at runtime.

• If the Persistent Enterprise Beans Timer Service group is not supported, and an application
attempts to create a programmatic persistent timer, the Enterprise Beans container must throw the
EJBException when the API is invoked.

• If Jakarta Messaging message-driven beans are supported, the Jakarta Messaging API (see [20])
must be supported.

15.1. Enterprise Beans Lite and Other Enterprise Beans API Groups

390 Jakarta® Enterprise Beans, Core Features Final

• If Jakarta XML Web Service Endpoints are supported, the web service interoperability rules
specified in Mapping to Web Service Protocols must be observed.

• To use a session bean written to the Enterprise Beans 3.x API, and adapted for use with an earlier
client view, support for the Enterprise Beans 2.x API group is required.

• To use an application client to access an Enterprise Beans 3.x remote session bean, the application
client container must be supported.

• Support for deployment descriptor versions must observe the rules in Support for Existing
Applications.

15.1.2. Integration with Other Technologies

This section describes the additional requirements that apply to an Enterprise Beans Container when
combined in a product that supports other Jakarta EE technologies.

If Jakarta Persistence is supported, the Enterprise Beans Container must support the use of the Jakarta
Persistence in conformance with the contracts defined in the Jakarta Persistence specification [3] and
the rules specified in Container Provider’s Responsibilities must be observed.

If Jakarta RESTful Web Services API is supported, singleton and stateless session beans must be
supported as Jakarta RESTful Web Services root resource classes, providers and Application subclasses
as defined by the Jakarta RESTful Web Services specification [9].

15.2. Bean Provider’s Responsibilities
This section describes the view and responsibilities of the Bean Provider.

15.2.1. APIs Provided by Container

The requirements on APIs provided by the Container are determined by the associated profile
specification, e.g. the Jakarta EE specification [18] or the Web Profile Specification.

15.2.2. Programming Restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure that
the enterprise bean is portable and can be deployed in any compliant Enterprise Beans container. The
restrictions apply to the implementation of the business methods. Container Provider’s Responsibility,
which describes the container’s view of these restrictions, defines the programming environment that
all Enterprise Beans containers must provide.

• An enterprise bean must not use read/write static fields. Using read-only static fields is allowed.
Therefore, it is recommended that all static fields in the enterprise bean class be declared as final.
This rule is required to ensure consistent runtime semantics because while some Enterprise Beans
containers may use a single JVM to execute all enterprise bean’s instances, others may distribute the
instances across multiple JVMs.

15.2. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 391

• An enterprise bean must not use thread synchronization primitives to synchronize execution of
multiple instances, unless it is a singleton session bean with bean-managed concurrency.
This is for the same reason as above. Synchronization would not work if the Enterprise Beans
container distributed enterprise bean’s instances across multiple JVMs.

• An enterprise bean must not use the AWT functionality to attempt to output information to a
display, or to input information from a keyboard.
Servers do not allow direct interaction between an application program and a keyboard/display
attached to the server system.

• An enterprise bean should exercise caution when using the Java I/O package to attempt to access
files and directories in the file system.
The file system APIs are not well-suited for business components to access data. Files might not be
accessible from all instances, or their content might be different on different instances, and
coordinating updates to the file can be difficult. Business components should use a resource manager
API, such as JDBC, to store data.

• An enterprise bean must not attempt to listen on a socket, accept connections on a socket, or use a
socket for multicast.
The Enterprise Beans architecture allows an enterprise bean instance to be a network socket client,
but it does not allow it to be a network server. Allowing the instance to become a network server
would conflict with the basic function of the enterprise bean— to serve the Enterprise Beans clients.

• The enterprise bean must not attempt to query a class to obtain information about the declared
members that are not otherwise accessible to the enterprise bean because of the security rules of
the Java language. The enterprise bean must not attempt to use the Reflection API to access
information that the security rules of the Java programming language make unavailable.
Allowing the enterprise bean to access information about other classes and to access the classes in a
manner that is normally disallowed by the Java programming language could compromise security.

• The enterprise bean must not attempt to create a class loader; set the context class loader; set
security manager; create a new security manager; stop the JVM; or change the input, output, and
error streams.
These functions are reserved for the Enterprise Beans container. Allowing the enterprise bean to use
these functions could compromise security and decrease the container’s ability to properly manage
the runtime environment.

• The enterprise bean must not attempt to set the socket factory used by ServerSocket, Socket, or the
stream handler factory used by URL.
These networking functions are reserved for the Enterprise Beans container. Allowing the enterprise
bean to use these functions could compromise security and decrease the container’s ability to
properly manage the runtime environment.

• The enterprise bean must not attempt to manage threads. The enterprise bean must not attempt to
start, stop, suspend, or resume a thread, or to change a thread’s priority or name. The enterprise
bean must not attempt to manage thread groups.
These functions are reserved for the Enterprise Beans container. Allowing the enterprise bean to
manage threads would decrease the container’s ability to properly manage the runtime environment.

15.2. Bean Provider’s Responsibilities

392 Jakarta® Enterprise Beans, Core Features Final

• The enterprise bean must not attempt to directly read or write a file descriptor.
Allowing the enterprise bean to read and write file descriptors directly could compromise security.

• The enterprise bean must not attempt to obtain the security policy information for a particular
code source.
Allowing the enterprise bean to access the security policy information would create a security hole.

• The enterprise bean must not attempt to load a native library.
This function is reserved for the Enterprise Beans container. Allowing the enterprise bean to load
native code would create a security hole.

• The enterprise bean must not attempt to gain access to packages and classes that the usual rules of
the Java programming language make unavailable to the enterprise bean.
This function is reserved for the Enterprise Beans container. Allowing the enterprise bean to perform
this function would create a security hole.

• The enterprise bean must not attempt to define a class in a package.
This function is reserved for the Enterprise Beans container. Allowing the enterprise bean to perform
this function would create a security hole.

• The enterprise bean must not attempt to access or modify the security configuration objects (Policy,
Security, Provider, Signer, and Identity).
These functions are reserved for the Enterprise Beans container. Allowing the enterprise bean to use
these functions could compromise security.

• The enterprise bean must not attempt to use the subclass and object substitution features of the
Java Serialization Protocol.
Allowing the enterprise bean to use these functions could compromise security.

• The enterprise bean must not attempt to pass this as an argument or method result. The enterprise
bean must pass the result of SessionContext.getBusinessObject, SessionContext.getEJBObject,
SessionContext.getEJBLocalObject, EntityContext.getEJBObject, or EntityContext.getEJBLocalObject
instead.

To guarantee portability of the enterprise bean’s implementation across all compliant Enterprise Beans
containers, the Bean Provider should test the enterprise bean using a container with the security
settings defined in Java SE Platform Security Policy for a Standard Enterprise Beans Container. That
table defines the minimal functionality that a compliant Enterprise Beans container must provide to
the enterprise bean instances at runtime.

15.3. Container Provider’s Responsibility
This section defines the container’s responsibilities for providing the runtime environment to the
enterprise bean instances. The requirements described here are considered to be the minimal
requirements; a container may choose to provide additional functionality that is not required by the
Enterprise Beans specification.

The following subsections describes the requirements in more detail.

15.3. Container Provider’s Responsibility

Final Jakarta® Enterprise Beans, Core Features 393

The following table defines the Java SE platform security permissions that the Enterprise Beans
container must be able to grant to the enterprise bean instances at runtime. The term "grant" means
that the container must be able to grant the permission, the term "deny" means that the container
should deny the permission.

Table 19. Java SE Platform Security Policy for a Standard Enterprise Beans Container

Permission name Enterprise Beans Container policy

java.security.AllPermission deny

java.awt.AWTPermission deny

java.io.FilePermission deny

java.net.NetPermission deny

java.util.PropertyPermission grant "*", "read"
deny all other

java.lang.reflect.ReflectPermission deny

java.lang.RuntimePermission grant "queuePrintJob"
grant "loadLibrary"
deny all other

java.io.FilePermission grant "*", "read,write"
deny all other

java.lang.SecurityPermission deny

java.io.SerializablePermission deny

java.net.SocketPermission grant "*", "connect" Note A
deny all other

Notes:
[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality
of the Java IDL and RMI-IIOP packages that are part of the Java SE platform.

Some containers may allow the Deployer to grant more, or fewer, permissions to the enterprise bean
instances than specified in Java SE Platform Security Policy for a Standard Enterprise Beans Container.
Support for this is not required by the Enterprise Beans specification. Enterprise beans that rely on more
or fewer permissions will not be portable across all Enterprise Beans containers.

15.3.1. Enterprise Beans Interfaces and Annotations Requirements

The container must implement the Enterprise Beans interfaces as defined in this specification.

The container must implement the semantics of the metadata annotations that are supported by
Enterprise Beans API as defined by this specification.

The container must support the use of the Jakarta Persistence in conformance with the contracts

15.3. Container Provider’s Responsibility

394 Jakarta® Enterprise Beans, Core Features Final

defined in the Jakarta Persistence specification [3].

15.3.2. JNDI Requirements

At the minimum, the Enterprise Beans container must provide a JNDI API name space to the enterprise
bean instances. The Enterprise Beans container must make the name space available to an instance
when the instance invokes the javax.naming.InitialContext default (no-arg) constructor.

An Enterprise Beans container within an implementation of the Web Profile or the embeddable
Enterprise Beans container, must make available the following objects in the name space:

• The local business interfaces of other enterprise beans.

• References to the no-interfaces view of other enterprise beans.

• UserTransaction objects

• EJBContext objects

• The resource factories used by the enterprise beans.

• The entity managers and entity manager factories used by the enterprise beans.

• TimerService objects for non-persistent timers

An Enterprise Beans container within an implementation of the Full Jakarta EE Platform must make
available the following objects in the name space:

• All objects listed as available in the Web Profile.

• The remote business interfaces of other enterprise beans.

• The web service interfaces used by the enterprise beans.

• The home interfaces of other enterprise beans.

• ORB objects

• TimerService objects for persistent timers

• All enterprise beans deployed within the same .war file are presented with the same JNDI name
space. In addition, all the instances of the same enterprise bean deployed within an ejb-jar file
must be presented with the same JNDI API name space.

15.3.3. Jakarta Transactions API Requirements

The Enterprise Beans Container must include the Jakarta Transactions jakarta.transaction API.

The Enterprise Beans Container must provide the jakarta.transaction.UserTransaction interface to
enterprise beans with bean-managed transaction demarcation by dependency injection, through the
jakarta.ejb.EJBContext interface, and also in JNDI under the name java:comp/UserTransaction, in the
cases required by the Enterprise Beans specification.

The Enterprise Beans Container must provide the

15.3. Container Provider’s Responsibility

Final Jakarta® Enterprise Beans, Core Features 395

jakarta.transaction.TransactionSynchronizationRegistry interface by dependency injection and in
JNDI under the name java:comp/TransactionSynchronizationRegistry.

It is illegal to associate Jakarta Transactions transactional interceptors with Enterprise Beans. The
Enterprise Beans Container should fail deployment of such applications.[88]

The other Jakarta Transactions interfaces are low-level transaction manager and resource manager
integration interfaces, and are not intended for direct use by enterprise beans.

15.3.4. JDBC™ API Requirements

The Enterprise Beans Container must include the JDBC javax.sql API and provide its functionality to
the enterprise bean instances, with the exception of the low-level XA and connection pooling
interfaces. These low-level interfaces are intended for integration of a JDBC driver with an application
server, not for direct use by enterprise beans.

15.3.5. Jakarta Messaging API Requirements

An implementation requiring the full Enterprise Beans API must include the Jakarta Messaging 2.0 API
and provide its functionality to the enterprise bean instances, with the exception of the low-level
interfaces that are intended for integration of a Jakarta Messaging provider with an application server,
not for direct use by enterprise beans. These interfaces include: jakarta.jms.ServerSession,
jakarta.jms.ServerSessionPool, jakarta.jms.ConnectionConsumer, and all the jakarta.jms XA interfaces.

In addition, the following methods are for use by the container only. Enterprise beans must not call
these methods:

jakarta.jms.Session.setMessageListener
jakarta.jms.Session.getMessageListener
jakarta.jms.Session.run
jakarta.jms.Connection.createConnectionConsumer
jakarta.jms.Connection.createSharedConnectionConsumer
jakarta.jms.Connection.createDurableConnectionConsumer
jakarta.jms.Connection.createSharedDurableConnectionConsumer

The following methods must not be called by enterprise beans because they may interfere with the
connection management by the container:

jakarta.jms.Connection.setExceptionListener
jakarta.jms.Connection.stop
jakarta.jms.Connection.setClientID
jakarta.jms.JMSContext.setExceptionListener
jakarta.jms.JMSContext.stop
jakarta.jms.JMSContext.setClientID

15.3. Container Provider’s Responsibility

396 Jakarta® Enterprise Beans, Core Features Final

Enterprise beans must not call the following methods:

jakarta.jms.MessageConsumer.setMessageListener
jakarta.jms.MessageConsumer.getMessageListener
jakarta.jms.JMSContext.setMessageListener
jakarta.jms.JMSContext.getMessageListener

An asynchronous send is not permitted in an enterprise bean. The following methods must therefore
not be called by enterprise beans:

jakarta.jms.Session.send(Message message,
 CompletionListener completionListener)
jakarta.jms.Session.send(Message message, int deliveryMode,
 int priority, long timeToLive,
 CompletionListener completionListener)
jakarta.jms.Session.send(Destination destination, Message message,
 CompletionListener completionListener)
jakarta.jms.Session.send(Destination destination, Message message,
 int deliveryMode, int priority, long timeToLive,
 CompletionListener completionListener)
jakarta.jms.JMSProducer.setAsync

This specification recommends, but does not require, that the container throw the
jakarta.jms.JMSException or a jakarta.jms.JMSRuntimeException (depending on the method signature) if
enterprise beans call any of the methods listed in this section.

15.3.6. Argument Passing Semantics

An enterprise bean’s remote business interfaces and/or remote home and remote component
interfaces are remote interfaces for Java RMI. The container must ensure the semantics for passing
arguments conforms to Java RMI-IIOP. Non-remote objects must be passed by value.

Specifically, the Enterprise Beans container is not allowed to pass non-remote objects by reference on
inter-Enterprise Beans invocations when the calling and called enterprise beans are collocated in the
same JVM. Doing so could result in the multiple beans sharing the state of a Java object, which would
break the enterprise bean’s semantics. Any local optimizations of remote interface calls must ensure
the semantics for passing arguments conforms to Java RMI-IIOP.

An enterprise bean’s local business interfaces and/or local home and local interfaces are local Java
interfaces. The caller and callee enterprise beans that make use of these local interfaces are typically
collocated in the same JVM. The Enterprise Beans container must ensure the semantics for passing
arguments across these interfaces conforms to the standard argument passing semantics of the Java
programming language.

15.3. Container Provider’s Responsibility

Final Jakarta® Enterprise Beans, Core Features 397

15.3.7. Other Requirements

The assertions contained in the Javadoc specification of the Enterprise Beans interfaces are required
functionality and must be implemented by compliant containers.

[88] This restriction may be removed in a future release of this specification.

15.3. Container Provider’s Responsibility

398 Jakarta® Enterprise Beans, Core Features Final

Chapter 16. Compatibility and Migration
This chapter addresses issues of compatibility and migration between Enterprise Beans 3.2 and earlier
components and clients.

16.1. Support for Existing Applications
Existing Enterprise Beans 3.1 and earlier applications that do not include entity bean components [89]

must be supported to run unchanged in Enterprise Beans 3.2 containers.

Full Enterprise Beans 3.2 implementations must support Enterprise Beans 1.1, Enterprise Beans 2.0,
Enterprise Beans 2.1, Enterprise Beans 3.0, and Enterprise Beans 3.1 deployment descriptors for
applications written to earlier versions of the Enterprise Beans specification. Enterprise Beans 3.2 Lite
implementations must support Enterprise Beans 3.0, and Enterprise Beans 3.1 deployment descriptors
for applications written to the Enterprise Beans 3.x versions of the Enterprise Beans specification.

16.2. Default Stateful Session Bean Concurrency
Behavior
Prior versions of the Enterprise Beans specification allowed the container to choose the default
behavior in the event of concurrent access attempts to a stateful session bean instance. This
specification requires a default of serialized requests in the face of concurrency. This means by default
clients will not receive the jakarta.ejb.ConcurrentAccessException when concurrent access occurs for a
request. This should have minimal impact to correctly written applications since even with the prior
behavior there was no guarantee of receiving such an exception due to the inherent race conditions.
Applications wishing to receive an exception in the face of concurrency can request that behavior
through newly defined metadata. See Serializing Session Bean Methods for more details.

16.3. Default Application Exception Subclassing
Behavior
The Enterprise Beans 3.0 Specification was ambiguous with respect to whether the designation of an
unchecked exception as an application exception applied to that exception’s subclasses. The Enterprise
Beans 3.1 specification clarified that, by default, the application exception designation is inherited by
subclasses. Non-inheriting behavior may be specified by means of the ApplicationException annotation
and/or the deployment descriptor. See Application Exceptions for more detail.

16.4. Interoperability of Enterprise Beans 3.2 and Earlier
Components
This release of Enterprise Beans supports migration and interoperability among client and server

16.1. Support for Existing Applications

Final Jakarta® Enterprise Beans, Core Features 399

components written to different versions of the Enterprise Beans APIs as described below.

16.4.1. Clients written to the Enterprise Beans 2.x APIs

An enterprise bean that is written to the Enterprise Beans 2.1 or earlier API release may be a client of
components written to the Enterprise Beans 3.x API using the earlier Enterprise Beans APIs when
deployed in an Enterprise Beans 3.x container.

Such an Enterprise Beans 2.1 or earlier client component does not need to be rewritten or recompiled
to be a client of a component written to the Enterprise Beans 3.x API.

Such clients may access components written to the Enterprise Beans 3.x APIs and components written
to the earlier Enterprise Beans APIs within the same transaction.

See Adapting Enterprise Beans 3.x Session Beans to Earlier Client Views for a discussion of the
mechanisms that are used to enable components written to the Enterprise Beans 3.x API to be accessed
and utilized by clients written to earlier versions of the Enterprise Beans specification.

16.4.2. Clients written to the Enterprise Beans 3.x API

A client written to the Enterprise Beans 3.x API may be a client of a component written to the
Enterprise Beans 2.1 or earlier API.

Such clients may access components written to the Enterprise Beans 3.x APIs and components written
to the earlier Enterprise Beans APIs within the same transaction.

Such clients access components written to the earlier Enterprise Beans APIs using the Enterprise Beans
2.1 client view home and component interfaces. The EJB annotation (or the ejb-ref and ejb-local-ref
deployment descriptor elements) may be used to specify the injection of home interfaces into
components that are clients of beans written to the earlier Enterprise Beans client view.

16.4.3. Combined use of Enterprise Beans 2.x and Enterprise Beans 3.x
persistence APIs

Enterprise Beans clients may access Jakarta Persistence entities and/or the EntityManager together
with Enterprise Beans 2.x entity beans within the same transaction as well as within separate
transactions.[90]

16.5. Adapting Enterprise Beans 3.x Session Beans to
Earlier Client Views
Clients written to the Enterprise Beans 2.1 and earlier client view depend upon the existence of a home
and component interface.

A session bean written to the Enterprise Beans 3.x API may be adapted to such earlier preexisting

16.5. Adapting Enterprise Beans 3.x Session Beans to Earlier Client Views

400 Jakarta® Enterprise Beans, Core Features Final

client view interfaces.

The session bean designates the interfaces to be adapted by using the RemoteHome and LocalHome
metadata annotations on the bean class (or equivalent deployment descriptor elements). The
corresponding remote and local component interfaces are not explicitly specified when using these
annotations. Rather, they are derived from the Home and LocalHome interfaces respectively.

When the client is deployed, the container classes that implement the Enterprise Beans 2.1 home and
remote component interfaces (or local home and local component interfaces) referenced by the client
must provide the implementation of the jakarta.ejb.EJBHome and jakarta.ejb.EJBObject interfaces (or
the jakarta.ejb.EJBLocalHome and jakarta.ejb.EJBLocalObject interfaces) respectively.

In addition, the container implementation classes must implement the methods of the home and
comonent interfaces to apply to the Enterprise Beans 3.x component being referenced as described
below.

16.5.1. Stateless Session Beans

The invocation of the home create() method must return the corresponding local component interface
or remote component interface of the bean. This may or may not cause the creation of the bean
instance, depending on the container’s implementation strategy. For example, the container may
preallocate bean instances (e.g., in a pooling strategy) or may defer the creation of the bean instance
until the first invocation of a business method on the bean class. When the bean instance is created,
the container invokes the setSessionContext method, if any, performs any other dependency injection,
and invokes the PostConstruct lifecycle callback methods, if any, as specified in Session Bean Creation.

It is likewise implementation-dependent as to whether the invocation of the EJBHome remove(Handle) or
EJBObject or EJBLocalObject remove() methods causes the immediate removal of the bean instance,
depending on the container’s implementation strategy. When the bean instance is removed, the
PreDestroy callback methods, if any, are invoked, as specified in Stateless Session Bean Lifecycle State
Diagram

The invocations of the business methods of the component interface are delegated to the bean class.

16.5.2. Stateful Session Beans

The invocation of the home create<METHOD>() method causes construction of the bean instance,
invocation of the PostConstruct lifecycle callbacks, if any, and invocation of the matching Init method,
and returns the corresponding local component interface or remote component interface of the bean.
Invocations of the PostConstruct lifecycle callback methods occur in a transaction context determined
by the methods’ transaction attributes, if any.

The invocation of the EJBHome remove(Handle) or the EJBObject or EJBLocalObject remove() method
causes the invocation of the PreDestroy lifecycle callback method(s), if any, and removal of the bean
instance, as described in Stateful Session Bean Removal. Invocation of the PreDestroy lifecycle callback
methods occur in a transaction context determined by the methods’ transaction attributes, if any.

16.5. Adapting Enterprise Beans 3.x Session Beans to Earlier Client Views

Final Jakarta® Enterprise Beans, Core Features 401

The invocations of the business methods of the component interface are delegated to the bean class.

The Init annotation is used to specify the correspondence of a method on the bean class with a
create<METHOD> method of the adapted EJBHome and/or adapted EJBLocalHome interface. The result type of
such an Init method is required to be void, and its parameter types must be exactly the same as those
of the referenced create<METHOD> method.

[89] See Pruning the Enterprise Beans API.
[90] In general, the same database data should not be accessed by both Jakarta Persistence entities and Enterprise Beans
2.x entities within the same application: behavior is unspecified if data aliasing occurs.

16.5. Adapting Enterprise Beans 3.x Session Beans to Earlier Client Views

402 Jakarta® Enterprise Beans, Core Features Final

Chapter 17. Embeddable Usage
The embeddable API is designed to support the execution of Enterprise Beans applications within a
Java SE environment only. Use of the jakarta.ejb.embeddable package is not allowed from an
application running in a Jakarta EE environment. Unlike traditional Jakarta EE server-based execution,
embeddable usage allows client code and its corresponding enterprise beans to run within the same
JVM and class loader. This provides better support for testing, offline processing (e.g. batch), and the
use of the Enterprise Beans programming model in desktop applications.

Support for the embeddable API is not required. However, any product that supports the embeddable
API must adhere to the requirements of this specification.

17.1. Overview
Embeddable usage requirements allow client code to instantiate an Enterprise Beans container that
runs within its own JVM and classloader. The client uses a specification-defined bootstrapping API to
start the embeddable Enterprise Beans container and identify the set of enterprise bean components
for execution.

The embeddable Enterprise Beans container provides a managed environment with support for the
same basic services that exist within a Jakarta EE runtime: injection, access to a component
environment, container-managed transactions, etc. In general, enterprise bean components are
unaware of the kind of managed environment in which they are running. This allows maximum
reusability of enterprise components across a wide range of testing and deployment scenarios without
significant rework.

17.2. Bootstrapping API
The embeddable Enterprise Beans container is instantiated using a bootstrapping API defined within
the jakarta.ejb package. By default, the embeddable container uses the JVM class path to scan for the
enterprise bean modules to be initialized. The client can override this behavior during setup by
specifying an alternative set of target modules.

17.2.1. EJBContainer

The jakarta.ejb.embeddable.EJBContainer abstract class represents an instance of an embeddable
container. It contains factory methods for creating a container instance. The client initializes a new
embeddable container by calling the createEJBContainer method of the
jakarta.ejb.embeddable.EJBContainer class.

For example,

EJBContainer ec = EJBContainer.createEJBContainer();

17.1. Overview

Final Jakarta® Enterprise Beans, Core Features 403

By default, the embeddable container searches the JVM classpath (the value of the Java System
property java.class.path) to find the set of Enterprise Beans modules for initialization. A classpath
entry is considered a matching entry if it meets one of the following criteria:

• It is an ejb-jar according to the standard module-type identification rules defined by the Jakarta EE
platform specification

• It is a directory containing a META-INF/ejb-jar.xml file or at least one .class file with an enterprise
bean component-defining annotation

Each such matching entry is considered an Enterprise Beans module within the same application.[91]

If an ejb-jar.xml file is present the module-name element defines the module name. Otherwise, for ejb-
jar files, the module name is the unqualified file name excluding the .jar extension, and for directories
the module name is the unqualified name of the directory (the last name in the pathname’s name
sequence). The embeddable container is not required to support more than one matching entry with
the same module name.

An alternative form of the createEJBContainer method provides a set of properties for customizing the
embeddable container creation:

jakarta.ejb.embeddable.EJBContainer createEJBContainer(Map<?, ?> properties)

This specification reserves the prefix jakarta.ejb. for standard property names. It is expected that
embeddable Container Providers will define their own properties as well.

For example, given the following java command and assuming that foo.jar and bar.jar are both valid
ejb-jar files,

java -classpath foo.jar:bar.jar:vendor-rt.jar:client.jar com.acme.Client

the following will result in only the bar.jar module being initialized by the container:

Properties props = new Properties();
props.setProperty(EJBContainer.MODULES, "bar");

EJBContainer ec = EJBContainer.createEJBContainer(props);

An embeddable Container Provider is permitted to require that a preprocessing or tooling step be
performed on the application modules prior to JVM initialization.

After identifying the set of matching modules, the embeddable container commences application
initialization. Any singleton session beans configured for eager initialization will be initialized at this
point. When the createEJBContainer method returns successfully, the client can access the client view

17.2. Bootstrapping API

404 Jakarta® Enterprise Beans, Core Features Final

of any enterprise bean in the application.

Enterprise beans running within the embeddable container are loaded using the context class loader
active on the thread at the time that the createEJBContainer method is called.

17.2.2. Standard Initialization Properties

The following embeddable container initialization properties are required to be supported by all
embeddable Container Providers.

17.2.2.1. jakarta.ejb.embeddable.provider

This property holds a String value that specifies the fully-qualified name of an embeddable container
provider class corresponding to the embeddable container implementation that should be used for this
application.

The property name is defined as EJBContainer.PROVIDER.

17.2.2.2. jakarta.ejb.embeddable.modules

This property is used to explicitly specify the module(s) to be initialized. It can refer to modules that
are included in the JVM classpath or to modules outside the JVM classpath.

If the target modules are part of the classpath, this property holds either a single module name (of type
java.lang.String) or an array of module names (of type java.lang.String[]). For each specified module
name, the container searches the class path for the first eligible ejb-jar file or directory whose
corresponding module name matches the given name. All specified modules must match an entry in
the classpath.

If the target modules are outside of the classpath, this property holds either a single java.io.File object
or an array of java.io.File objects, where each file object refers to either an ejb-jar file or an exploded
ejb-jar directory in the format listed above. Note that in this case it is the responsibility of the caller to
ensure that the context class loader has visibility to the classes required by these modules.

The property name is defined as EJBContainer.MODULES.

17.2.2.3. jakarta.ejb.embeddable.appName

This property specifies an application name for the Enterprise Beans modules executing within the
embeddable container. If specified, the property value applies to the <app-name> portion of the portable
global JNDI name syntax. It is recommended that this property be set whenever an embeddable
container is executed with more than one Enterprise Beans module.

The property name is defined as EJBContainer.APP_NAME.

17.2. Bootstrapping API

Final Jakarta® Enterprise Beans, Core Features 405

17.2.3. Looking Up Session Bean References

The EJBContainer instance can be used to retrieve a javax.naming.Context object that supports the
lookup of client references to session beans running within the embeddable container. Session bean
references are identified using the portable “java:global/” JNDI name syntax defined in section Access
in the Global JNDI Namespace.

A client retrieves a Context object using the following EJBContainer method:

javax.naming.Context EJBContainer.getContext();

The following example illustrates the lookup of a FooLocal local business interface of a session bean
with ejb-name FooBean in the ejb-jar foo.jar:

Context ctx = ec.getContext();

FooLocal foo = (FooLocal) ctx.lookup("java:global/foo/FooBean");

17.2.4. Embeddable Container Shutdown

To shut down an embeddable container instance and its associated application, the client may call the
EJBContainer.close() method or, because the EJBContainer class implements the
java.lang.AutoCloseable interface, the client may close the container implicitly by using the try-with-
resources statement when aquiring the EJBContainer instance.

The client is not required to call close() or use the try-with-resources statement, but their use is
recommended for optimal resource cleanup, especially in the case when the application lifetime is
shorter than the lifetime of the enclosing JVM.

During the implicit or explicit processing of the close() method, the embeddable container:

• cancels all non-persistent timers

• cancels all pending asynchronous invocations

• calls the PreDestroy methods of any singleton session bean instances in the application

An embeddable Container Provider is only required to support one active embeddable Enterprise
Beans container at a time per JVM. Attempts to concurrently create multiple active embeddable
Enterprise Beans containers may result in a container initialization error.

17.3. Embeddable Container Provider’s Responsibilities
This section describes the responsibilities of the embeddable Container Provider to support an
embeddable container environment.

17.3. Embeddable Container Provider’s Responsibilities

406 Jakarta® Enterprise Beans, Core Features Final

17.3.1. Runtime Environment

Except for the packaging requirements, the embeddable Container Provider is required to support the
Enterprise Beans Lite group of the Enterprise Beans API within an embeddable container
environment. See EJBContainer for the packaging requirements. An embeddable Container Provider
may additionally support other Enterprise Beans API groups within an embeddable container
environment. See Enterprise Beans Lite and Other Enterprise Beans API Groups for more details.

17.3.2. Naming Lookups

The embeddable Container Provider is required to support naming lookups of the local and no-
interface views of any session beans defined to run within the embeddable container. Naming entries
for these enterprise beans must conform to the portable global JNDI name requirements in Access in
the Global JNDI Namespace.

17.3.3. Embeddable Container Bootstrapping

An embeddable Container Provider implementation must act as a service provider by supplying a
service provider configuration file as described in the JAR File Specification [22].

The service provider configuration file serves to export the embeddable container implementation
class to the EJBContainer bootstrap class, positioning itself as a candidate for instantiation.

The embeddable Container Provider supplies the provider configuration file by creating a text file
named jakarta.ejb.spi.EJBContainerProvider and placing it in the META-INF/services directory of one
of its JAR files. The contents of the file must be the name of the embeddable Container Provider
implementation class of the jakarta.ejb.spi.EJBContainerProvider interface.

Example:

An embeddable Container Provider creates a JAR called acme.jar that contains its embeddable
container implementation. The JAR includes the provider configuration file:

acme.jar
 META-INF/services/jakarta.ejb.spi.EJBContainerProvider
 com/acme/EJBContainerProvider.class
 ...

The contents of the META-INF/services/jakarta.ejb.spi.EJBContainerProvider file is nothing more than
the name of the implementation class: com.acme.EJBContainerProvider.

The EJBContainer bootstrap class will locate all of the embeddable Container Providers by their
provider configuration files and call the EJBContainerProvider.createEJBContainer(Map<?, ?>) method
on them in turn until an appropriate backing provider returns an EJBContainer instance. A provider
may deem itself as appropriate for the embeddable application if any of the following are true:

17.3. Embeddable Container Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 407

• The jakarta.ejb.embeddable.provider property was included in the Map passed to the
createEJBContainer method and the value of the property is the provider’s implementation class.

• No jakarta.ejb.embeddable.provider property was specified.

If a provider does not qualify as the provider for the embeddable application, it must return null when
createEJBContainer is invoked on it.

17.3.4. Concrete jakarta.ejb.embeddable.EJBContainer Implementation Class

The embeddable Container Provider is required to provide a subclass of the
jakarta.ejb.embeddable.EJBContainer class. The following are the requirements for this class:

• The class must be defined as public and must not be abstract

• The class must extend either directly or indirectly the class jakarta.ejb.embeddable.EJBContainer

• The class must provide implementations of the following jakarta.ejb.embeddable.EJBContainer
methods:

◦ getContext()

◦ close()

[91] Support for more than one module is required for a Full Jakarta EE platform product. Multi-module support is only
required for Jakarta EE profiles that require support for .ear files.

17.3. Embeddable Container Provider’s Responsibilities

408 Jakarta® Enterprise Beans, Core Features Final

Chapter 18. Responsibilities of Enterprise
Beans Roles
This chapter provides the summary of the responsibilities of each Enterprise Beans Role.

18.1. Bean Provider’s Responsibilities
This section highlights the requirements for the Bean Provider. Meeting these requirements is
necessary to ensure that the enterprise beans developed by the Bean Provider can be deployed in all
compliant Enterprise Beans containers.

18.1.1. API Requirements

The enterprise beans must meet all the API requirements defined in the individual chapters of this
document.

18.1.2. Packaging Requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file or .war file in the
format described in Packaging.

The deployment descriptor, if present, must conform to the requirements of Deployment Descriptor.

18.2. Application Assembler’s Responsibilities
The requirements for the Application Assembler are in defined in Deployment Descriptor and
Packaging.

18.3. Container Provider’s Responsibilities
The Container Provider is responsible for providing the deployment tools used by the Deployer to
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment tools are
defined in the individual chapters of this document.

The Container Provider is responsible for implementing its part of the Enterprise Beans contracts and
its part of the contracts described in Jakarta Persistence specification [3], and for providing all the
runtime services described in the individual chapters of this document.

18.4. Deployer’s Responsibilities
The Deployer uses the deployment tools provided by the Container Provider to deploy ejb-jar files or
.war files produced by the Bean Providers and Application Assemblers.

18.1. Bean Provider’s Responsibilities

Final Jakarta® Enterprise Beans, Core Features 409

The individual chapters of this document describe the responsibilities of the Deployer in more detail.

18.5. System Administrator’s Responsibilities
The System Administrator is responsible for configuring the Enterprise Beans container and server,
setting up security management, integrating resource managers with the Enterprise Beans container,
and runtime monitoring of deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administrator in
more detail.

18.6. Client Programmer’s Responsibilities
The Enterprise Beans client programmer writes applications that access enterprise beans via their
business interfaces, via their no-interface view, via their web service client view, or via messages, or
view their home and component interfaces.

18.5. System Administrator’s Responsibilities

410 Jakarta® Enterprise Beans, Core Features Final

Related Documents
▪ [1] Enterprise JavaBeans™, version 3.2. https://jcp.org/en/jsr/detail?id=345.

▪ [2] Jakarta Enterprise Beans, Optional Features 4.0 https://jakarta.ee/specifications/enterprise-
beans/4.0/.

▪ [3] Jakarta Persistence 3.0. https://jakarta.ee/specifications/persistence/3.0/.

▪ [4] Jakarta XML Web Services 3.0. https://jakarta.ee/specifications/xml-web-services/3.0/.

▪ [5] Jakarta Enterprise Web Services 2.0. https://jakarta.ee/specifications/enterprise-ws/2.0/.

▪ [6] Jakarta Web Services Metadata 3.0. https://jakarta.ee/specifications/web-services-metadata/3.0/.

▪ [7] Jakarta Managed Beans 2.0. https://jakarta.ee/specifications/managedbeans/2.0/.

▪ [8] Jakarta Context Dependency Injection 3.0 https://jakarta.ee/specifications/cdi/3.0/.

▪ [9] Jakarta RESTful Web Services 3.0 https://jakarta.ee/specifications/restful-ws/3.0/.

▪ [10] The Java Virtual Machine Specification. https://docs.oracle.com/javase/specs/jvms/se8/html/
index.html.

▪ [11] W3C: SOAP 1.2. https://www.w3.org/TR/soap/.

▪ [12]Web Services Description Language (WSDL) 1.1. https://www.w3.org/TR/wsdl.html.

▪ [13] Java™ Platform, Standard Edition 8 API Specification. https://docs.oracle.com/javase/8/docs/api/
index.html.

▪ [14] Java™ Naming and Directory Interface 1.2 Specification (JNDI). https://docs.oracle.com/javase/
8/docs/technotes/guides/jndi/index.html.

▪ [15] Jakarta Interceptors 2.0. https://jakarta.ee/specifications/interceptors/2.0/.

▪ [16] Jakarta Connectors 2.0. https://jakarta.ee/specifications/connectors/2.0/.

▪ [17] Jakarta Transactions 2.0. https://jakarta.ee/specifications/transactions/2.0/.

▪ [18] Jakarta EE Platform 9. https://jakarta.ee/specifications/platform/9/.

▪ [19] Java™ Transaction Service, version 1.0 (JTS). https://www.oracle.com/technetwork/java/javaee/
jts-spec095-1508547.pdf.

▪ [20] Jakarta Messaging 3.0. https://jakarta.ee/specifications/messaging/3.0/.

▪ [21] List of zoneinfo time zones: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

▪ [22] JAR File Specification, https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html.

▪ [23] Java™ Security. https://www.oracle.com/java/technologies/javase/javase-tech-security.html.

▪ [24] Java Remote Method Invocation (RMI). https://docs.oracle.com/javase/8/docs/technotes/guides/
rmi/.

▪ [25] Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.

▪ [26] JDBC™ 4.3 API (JDBC specification). https://jcp.org/en/jsr/detail?id=221.

Related Documents

Final Jakarta® Enterprise Beans, Core Features 411

https://jcp.org/en/jsr/detail?id=345
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/persistence/3.0/
https://jakarta.ee/specifications/xml-web-services/3.0/
https://jakarta.ee/specifications/enterprise-ws/2.0/
https://jakarta.ee/specifications/web-services-metadata/3.0/
https://jakarta.ee/specifications/managedbeans/2.0/
https://jakarta.ee/specifications/cdi/3.0/
https://jakarta.ee/specifications/restful-ws/3.0/
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://www.w3.org/TR/soap/
https://www.w3.org/TR/wsdl.html
https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html
https://jakarta.ee/specifications/interceptors/2.0/
https://jakarta.ee/specifications/connectors/2.0/
https://jakarta.ee/specifications/transactions/2.0/
https://jakarta.ee/specifications/platform/9/
https://www.oracle.com/technetwork/java/javaee/jts-spec095-1508547.pdf
https://www.oracle.com/technetwork/java/javaee/jts-spec095-1508547.pdf
https://jakarta.ee/specifications/messaging/3.0/
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
https://www.oracle.com/java/technologies/javase/javase-tech-security.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
https://jcp.org/en/jsr/detail?id=221

▪ [27] Jakarta Enterprise Beans 3.2 https://jakarta.ee/specifications/enterprise-beans/3.2/.

▪ [28] Enterprise JavaBeans™, version 3.1. https://jcp.org/en/jsr/detail?id=318.

▪ [29] Enterprise JavaBeans™, version 3.0. https://jcp.org/en/jsr/detail?id=220.

Related Documents

412 Jakarta® Enterprise Beans, Core Features Final

https://jakarta.ee/specifications/enterprise-beans/3.2/
https://jcp.org/en/jsr/detail?id=318
https://jcp.org/en/jsr/detail?id=220

Appendix A: Revision History
This appendix lists the significant changes that have been made to this document during the
development of the Enterprise Beans 4.0 Specification.

A.1. Public Draft
Document updates in preparation for Enterprise Beans 4.0:

• Removed the methods relying on java.security.Identity See Security Management

• Removed the methods relying on Jakarta XML RPC See Session Bean Component Contract

• Removed the deprecated EJBContext.getEnvironment() method See Enterprise Bean Environment

• Marked the Enterprise Beans 2.x API Group as "Optional" See Runtime Environment

• @Schedule now a repeatable annotation See Automatic Timer Creation

Removed documents in preparation for Enterprise Beans 4.0:

• “Support for Distributed Interoperability”

A.2. Final Release Candidate

A.3. Final Release

A.1. Public Draft

Final Jakarta® Enterprise Beans, Core Features 413

	Jakarta® Enterprise Beans, Core Features
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Introduction
	1.1. Target Audience
	1.2. What is New in This Release
	1.3. What was New in Jakarta Enterprise Beans 3.2
	1.4. What was New in Enterprise JavaBeans 3.2
	1.5. What was New in Enterprise JavaBeans 3.1
	1.5.1. What was New in Enterprise JavaBeans 3.0

	1.6. Acknowledgements
	1.7. Acknowledgements for Enterprise JavaBeans 3.2
	1.8. Organization of the Specification Documents
	1.9. Document Conventions

	Chapter 2. Overview
	2.1. Overall Goals
	2.2. Enterprise Beans Roles
	2.2.1. Enterprise Bean Provider
	2.2.2. Application Assembler
	2.2.3. Deployer
	2.2.4. Enterprise Beans Server Provider
	2.2.5. Enterprise Beans Container Provider
	2.2.6. System Administrator

	2.3. Enterprise Beans
	2.3.1. Characteristics of Enterprise Beans
	2.3.2. Flexible Model

	2.4. Enterprise Bean Object Types
	2.4.1. Session Objects
	2.4.2. Message-Driven Objects
	2.4.3. Entity Objects (Optional)

	2.5. Mapping to Web Service Protocols
	2.6. Pruning the Enterprise Beans API
	2.7. Relationship to Jakarta Managed Beans
	2.8. Relationship to Jakarta Contexts and Dependency Injection
	2.9. Relationship to Jakarta RESTful Web Services

	Chapter 3. Client View of a Session Bean
	3.1. Overview
	3.2. Local, Remote, and Web Service Client Views
	3.2.1. Remote Clients
	3.2.2. Local Clients
	3.2.3. Choosing Between a Local or Remote Client View
	3.2.4. Web Service Clients

	3.3. Enterprise Beans Container
	3.4. Client View of Session Beans Written to the Enterprise Beans 3.x Simplified API
	3.4.1. Obtaining a Session Bean’s Business Interface
	3.4.2. Obtaining a Reference to the No-interface View
	3.4.3. Session Bean’s Business Interface
	3.4.4. Session Bean’s No-Interface View
	3.4.5. Client View of Session Object’s Life Cycle
	3.4.6. Example of Obtaining and Using a Session Object
	3.4.7. Session Object Identity
	3.4.7.1. Stateful Session Beans
	3.4.7.2. Stateless Session Beans
	3.4.7.3. Singleton Session Beans

	3.4.8. Asynchronous Invocations
	3.4.8.1. Return Values

	3.4.9. Concurrent Access to Session Bean References

	3.5. The Web Service Client View of a Stateless or Singleton Session Bean
	3.5.1. Jakarta XML Web Services Clients

	3.6. Remote and Local Client View of Session Beans Written to the Enterprise Beans 2.1 Client View API
	3.6.1. Locating a Session Bean’s Home Interface
	3.6.2. Session Bean’s Remote Home Interface
	3.6.2.1. Creating a Session Object
	3.6.2.2. Removing a Session Object

	3.6.3. Session Bean’s Local Home Interface
	3.6.3.1. Creating a Session Object
	3.6.3.2. Removing a Session Object

	3.6.4. EJBObject and EJBLocalObject
	3.6.5. Client view of Session Object’s Life Cycle
	3.6.5.1. References to Session Object Remote Component Interfaces
	3.6.5.2. References to Session Object Local Component Interfaces

	3.6.6. Creating and Using a Session Object
	3.6.7. Object Identity
	3.6.7.1. Stateful Session Beans
	3.6.7.2. Stateless Session Beans
	3.6.7.3. getPrimaryKey()

	3.6.8. Type Narrowing

	Chapter 4. Session Bean Component Contract
	4.1. Overview
	4.2. Conversational State of a Stateful Session Bean
	4.2.1. Instance Passivation and Conversational State
	4.2.2. The Effect of Transaction Rollback on Conversational State

	4.3. Protocol Between a Session Bean Instance and its Container
	4.3.1. Required Session Bean Metadata
	4.3.2. Dependency Injection
	4.3.3. The SessionContext Interface
	4.3.3.1. Use of the MessageContext Interface by Session Beans

	4.3.4. Session Bean Lifecycle Callback Interceptor Methods
	4.3.5. The SessionBean Interface
	4.3.6. The Session Synchronization Notifications for Stateful Session Beans
	4.3.7. Timeout Callbacks for Stateless and Singleton Session Beans
	4.3.8. Business Method Delegation
	4.3.9. Session Bean Creation
	4.3.9.1. Stateful Session Beans
	4.3.9.2. Stateless Session Beans

	4.3.10. Stateful Session Bean Removal
	4.3.11. Stateful Session Bean Timeout
	4.3.12. Business Method Interceptor Methods for Session Beans
	4.3.13. Serializing Session Bean Methods
	4.3.13.1. Stateful Session Bean Concurrent Access Timeouts

	4.3.14. Transaction Context of Session Bean Methods

	4.4. Access in the Global JNDI Namespace
	4.4.1. Syntax
	4.4.1.1. java:app
	4.4.1.2. java:module

	4.4.2. Examples
	4.4.2.1. Session bean exposing a single local business interface
	4.4.2.2. Session bean exposing multiple client views

	4.5. Asynchronous Methods
	4.5.1. Metadata
	4.5.2. Method Requirements
	4.5.2.1. Return Values
	4.5.2.2. Method cancellation

	4.5.3. Transactions
	4.5.4. Security
	4.5.5. Client Exception Behavior

	4.6. Stateful Session Beans
	4.6.1. Stateful Session Bean Lifecycle State Diagram
	4.6.2. Operations Allowed in the Methods of a Stateful Session Bean Class
	4.6.3. Dealing with Exceptions
	4.6.4. Missed PreDestroy Calls
	4.6.5. Disabling Passivation of Stateful Session Beans
	4.6.6. Transaction Semantics of Initialization, Destruction, Activation and Passivation
	4.6.7. Restrictions for Transactions

	4.7. Stateless Session Beans
	4.7.1. Stateless Session Bean Lifecycle State Diagram
	4.7.2. Operations Allowed in the Methods of a Stateless Session Bean Class
	4.7.3. Dealing with Exceptions

	4.8. Singleton Session Beans
	4.8.1. Singleton Session Bean Initialization
	4.8.2. Singleton Session Bean Destruction
	4.8.3. Transaction Semantics of Initialization and Destruction
	4.8.4. Singleton Session Bean Error Handling
	4.8.5. Singleton Session Bean Concurrency
	4.8.5.1. Container-Managed Concurrency
	4.8.5.2. Bean-Managed Concurrency
	4.8.5.3. Specification of a Concurrency Management Type
	4.8.5.4. Specification of the Container-Managed Concurrency Metadata for a Bean’s Methods
	4.8.5.5. Concurrent Access Timeouts

	4.8.6. Operations Allowed in the Methods of a Singleton Session Bean

	4.9. The Responsibilities of the Bean Provider
	4.9.1. Classes and Interfaces
	4.9.2. Session Bean Class
	4.9.2.1. Session Bean Superclasses

	4.9.3. Lifecycle Callback Interceptor Methods
	4.9.4. Session Synchronization Methods
	4.9.5. ejbCreate<METHOD> Methods
	4.9.6. Business Methods
	4.9.7. Session Bean’s Business Interface
	4.9.8. Session Bean’s No-Interface View
	4.9.9. Session Bean’s Remote Component Interface
	4.9.10. Session Bean’s Remote Home Interface
	4.9.11. Session Bean’s Local Component Interface
	4.9.12. Session Bean’s Local Home Interface
	4.9.13. Session Bean’s Web Service Endpoint Interface

	4.10. The Responsibilities of the Container Provider
	4.10.1. Generation of Implementation Classes
	4.10.2. Generation of WSDL
	4.10.3. Session Business Interface Implementation Class
	4.10.4. No-Interface View Reference Class
	4.10.5. Session EJBHome Class
	4.10.6. Session EJBObject Class
	4.10.7. Session EJBLocalHome Class
	4.10.8. Session EJBLocalObject Class
	4.10.9. Web Service Endpoint Implementation Class
	4.10.10. Asynchronous Client Future<V> Return Value Implementation Class
	4.10.11. Handle Classes
	4.10.12. EJBMetaData Class
	4.10.13. Non-reentrant Instances
	4.10.14. Transaction Scoping, Security, Exceptions
	4.10.15. Jakarta XML Web Services Message Handlers for Web Service Endpoints
	4.10.16. SessionContext

	Chapter 5. Message-Driven Bean Component Contract
	5.1. Overview
	5.2. Goals
	5.3. Client View of a Message-Driven Bean
	5.4. Protocol Between a Message-Driven Bean Instance and its Container
	5.4.1. Required MessageDrivenBean Metadata
	5.4.2. The Required Message Listener Interface
	5.4.3. Message-Driven Bean with No-Methods Listener Interface
	5.4.4. Dependency Injection
	5.4.5. The MessageDrivenContext Interface
	5.4.6. Message-Driven Bean Lifecycle Callback Interceptor Methods
	5.4.7. The Optional MessageDrivenBean Interface
	5.4.8. Timeout Callbacks
	5.4.9. Message-Driven Bean Creation
	5.4.10. Message Listener Interceptor Methods for Message-Driven Beans
	5.4.11. Serializing Message-Driven Bean Methods
	5.4.12. Concurrency of Message Processing
	5.4.13. Transaction Context of Message-Driven Bean Methods
	5.4.14. Security Context of Message-Driven Bean Methods
	5.4.15. Association of a Message-Driven Bean with a Destination or Endpoint
	5.4.16. Activation Configuration Properties
	5.4.17. Jakarta Messaging Message-Driven Beans
	5.4.17.1. Message Acknowledgment
	5.4.17.2. Message Selectors
	5.4.17.3. Destination Type
	5.4.17.4. Destination Lookup
	5.4.17.5. Connection Factory Lookup
	5.4.17.6. Subscription Durability
	5.4.17.7. Subscription Name
	5.4.17.8. Client Identifier

	5.4.18. Dealing with Exceptions
	5.4.19. Missed PreDestroy Callbacks
	5.4.20. Replying to a Jakarta Messaging Message

	5.5. Message-Driven Bean State Diagram
	5.5.1. Operations Allowed in the Methods of a Message-Driven Bean Class

	5.6. The Responsibilities of the Bean Provider
	5.6.1. Classes and Interfaces
	5.6.2. Message-Driven Bean Class
	5.6.3. Message-Driven Bean Superclasses
	5.6.4. Message Listener Method
	5.6.5. Message-Driven Bean with No-Methods Listener Interface
	5.6.6. Lifecycle Callback Interceptor Methods

	5.7. The Responsibilities of the Container Provider
	5.7.1. Generation of Implementation Classes
	5.7.2. Deployment of Message-Driven Beans with No-Methods Listener Interface
	5.7.3. Deployment of Jakarta Messaging Message-Driven Beans
	5.7.4. Request/Response Messaging Types
	5.7.5. Non-reentrant Instances
	5.7.6. Transaction Scoping, Security, Exceptions

	Chapter 6. Persistence
	Chapter 7. Interceptors
	7.1. Overview
	7.2. Interceptor Life Cycle
	7.3. Business Method Interceptors
	7.4. Timer Timeout Method Interceptors
	7.5. Interceptors for LifeCycle Event Callbacks
	7.6. InvocationContext
	7.7. Exception Handling
	7.8. Specification of Interceptors in the Deployment Descriptor
	7.8.1. Specification of Interceptors
	7.8.2. Binding of Interceptors to Target Classes
	7.8.2.1. Examples

	Chapter 8. Support for Transactions
	8.1. Overview
	8.1.1. Transactions
	8.1.2. Transaction Model
	8.1.3. Relationship to Jakarta Transactions

	8.2. Sample Scenarios
	8.2.1. Update of Multiple Databases
	8.2.2. Messages Sent or Received Over Jakarta Messaging Sessions and Update of Multiple Databases
	8.2.3. Update of Databases via Multiple Enterprise Beans Servers
	8.2.4. Client-Managed Demarcation
	8.2.5. Container-Managed Demarcation

	8.3. Bean Provider’s Responsibilities
	8.3.1. Bean-Managed Versus Container-Managed Transaction Demarcation
	8.3.1.1. Non-Transactional Execution

	8.3.2. Isolation Levels
	8.3.3. Enterprise Beans Using Bean-Managed Transaction Demarcation
	8.3.3.1. getRollbackOnly and setRollbackOnly Methods

	8.3.4. Enterprise Beans Using Container-Managed Transaction Demarcation
	8.3.4.1. jakarta.ejb.SessionSynchronization Interface
	8.3.4.2. jakarta.ejb.EJBContext.setRollbackOnly Method
	8.3.4.3. jakarta.ejb.EJBContext.getRollbackOnly method

	8.3.5. Use of Jakarta Messaging APIs in Transactions
	8.3.6. Specification of a Bean’s Transaction Management Type
	8.3.7. Specification of the Transaction Attributes for a Bean’s Methods
	8.3.7.1. Specification of Transaction Attributes with Metadata Annotations
	8.3.7.2. Specification of Transaction Attributes in the Deployment Descriptor

	8.4. Application Assembler’s Responsibilities
	8.5. Deployer’s Responsibilities
	8.6. Container Provider Responsibilities
	8.6.1. Bean-Managed Transaction Demarcation
	8.6.2. Container-Managed Transaction Demarcation for Session Beans
	8.6.2.1. Session Synchronization Callbacks

	8.6.3. Container-Managed Transaction Demarcation for Business Methods
	8.6.3.1. NOT_SUPPORTED
	8.6.3.2. REQUIRED
	8.6.3.3. SUPPORTS
	8.6.3.4. REQUIRES_NEW
	8.6.3.5. MANDATORY
	8.6.3.6. NEVER
	8.6.3.7. Transaction Attribute Summary
	8.6.3.8. Handling of setRollbackOnly Method
	8.6.3.9. Handling of getRollbackOnly Method
	8.6.3.10. Handling of getUserTransaction Method
	8.6.3.11. Timing of Return Value Marshalling with Regard to Transaction Boundaries

	8.6.4. Container-Managed Transaction Demarcation for Message-Driven Beans
	8.6.5. Container-Managed Transaction Demarcation for Message Listener Methods
	8.6.5.1. NOT_SUPPORTED
	8.6.5.2. REQUIRED
	8.6.5.3. Handling of setRollbackOnly Method
	8.6.5.4. Handling of getRollbackOnly Method
	8.6.5.5. Handling of getUserTransaction Method

	8.6.6. Local Transaction Optimization
	8.6.7. Handling of Methods that Run with "an unspecified transaction context"

	8.7. Access from Multiple Clients in the Same Transaction Context
	8.7.1. Transaction "Diamond" Scenario with an Entity Object
	8.7.2. Container Provider’s Responsibilities
	8.7.3. Bean Provider’s Responsibilities
	8.7.4. Application Assembler and Deployer’s Responsibilities
	8.7.5. Transaction Diamonds involving Session Objects

	Chapter 9. Exception Handling
	9.1. Overview and Concepts
	9.1.1. Application Exceptions
	9.1.2. Goals for Exception Handling

	9.2. Bean Provider’s Responsibilities
	9.2.1. Application Exceptions
	9.2.2. System Exceptions

	9.3. Container Provider Responsibilities
	9.3.1. Exceptions from a Session Bean’s Business Interface Methods and No-Interface View Methods
	9.3.2. Exceptions from Method Invoked via Session Bean’s 2.1 Client View or through Web Service Client View
	9.3.3. Exceptions from AroundConstruct, PostConstruct and PreDestroy Lifecycle Callbacks
	9.3.4. Exceptions from Message-Driven Bean Message Listener Methods
	9.3.5. Exceptions from an Enterprise Bean’s Timeout Callback Method
	9.3.6. Exceptions from Other Container-invoked Callbacks
	9.3.7. Non-existing Stateful Session Object
	9.3.8. Exceptions from the Management of Container-Managed Transactions
	9.3.9. Release of Resources
	9.3.10. Support for Deprecated Use of java.rmi.RemoteException

	9.4. Client’s View of Exceptions
	9.4.1. Application Exception
	9.4.1.1. Local and Remote Clients
	9.4.1.2. Web Service Clients

	9.4.2. java.rmi.RemoteException and jakarta.ejb.EJBException
	9.4.2.1. jakarta.ejb.EJBTransactionRolledbackException, jakarta.ejb.TransactionRolledbackLocalException, and jakarta.transaction.TransactionRolledbackException
	9.4.2.2. jakarta.ejb.EJBTransactionRequiredException, jakarta.ejb.TransactionRequiredLocalException, and jakarta.transaction.TransactionRequiredException
	9.4.2.3. jakarta.ejb.NoSuchEJBException, jakarta.ejb.NoSuchObjectLocalException, and java.rmi.NoSuchObjectException

	9.5. System Administrator’s Responsibilities

	Chapter 10. Enterprise Bean Environment
	10.1. Overview
	10.2. Enterprise Bean’s Environment as a JNDI Naming Context
	10.2.1. Sharing of Environment Entries
	10.2.2. Annotations for Environment Entries
	10.2.3. Annotations and Deployment Descriptors

	10.3. Responsibilities by Enterprise Beans Role
	10.3.1. Bean Provider’s Responsibilities
	10.3.2. Application Assembler’s Responsibility
	10.3.3. Deployer’s Responsibility
	10.3.4. Container Provider Responsibility

	10.4. Simple Environment Entries
	10.4.1. Bean Provider’s Responsibilities
	10.4.1.1. Injection of Simple Environment Entries Using Annotations
	10.4.1.2. Programming Interfaces for Accessing Simple Environment Entries
	10.4.1.3. Declaration of Simple Environment Entries in the Deployment Descriptor

	10.4.2. Application Assembler’s Responsibility
	10.4.3. Deployer’s Responsibility
	10.4.4. Container Provider Responsibility

	10.5. Enterprise Bean References
	10.5.1. Bean Provider’s Responsibilities
	10.5.1.1. Injection of Enterprise Bean References
	10.5.1.2. Enterprise Bean Reference Programming Interfaces
	10.5.1.3. Declaration of Enterprise Bean References in Deployment Descriptor

	10.5.2. Application Assembler’s Responsibilities
	10.5.2.1. Overriding Rules

	10.5.3. Deployer’s Responsibility
	10.5.4. Container Provider’s Responsibility

	10.6. Web Service References
	10.7. Resource Manager Connection Factory References
	10.7.1. Bean Provider’s Responsibilities
	10.7.1.1. Injection of Resource Manager Connection Factory References
	10.7.1.2. Programming Interfaces for Resource Manager Connection Factory References
	10.7.1.3. Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	10.7.1.4. Standard Resource Manager Connection Factory Types

	10.7.2. Deployer’s Responsibility
	10.7.3. Container Provider Responsibility
	10.7.4. System Administrator’s Responsibility

	10.8. Resource Environment References
	10.8.1. Bean Provider’s Responsibilities
	10.8.1.1. Injection of Resource Environment References
	10.8.1.2. Resource Environment Reference Programming Interfaces
	10.8.1.3. Declaration of Resource Environment References in Deployment Descriptor

	10.8.2. Deployer’s Responsibility
	10.8.3. Container Provider’s Responsibility

	10.9. Message Destination References
	10.9.1. Bean Provider’s Responsibilities
	10.9.1.1. Injection of Message Destination References
	10.9.1.2. Message Destination Reference Programming Interfaces
	10.9.1.3. Declaration of Message Destination References in Deployment Descriptor

	10.9.2. Application Assembler’s Responsibilities
	10.9.3. Deployer’s Responsibility
	10.9.4. Container Provider’s Responsibility

	10.10. Persistence Unit References
	10.10.1. Bean Provider’s Responsibilities
	10.10.1.1. Injection of Persistence Unit References
	10.10.1.2. Programming Interfaces for Persistence Unit References
	10.10.1.3. Declaration of Persistence Unit References in Deployment Descriptor

	10.10.2. Application Assembler’s Responsibilities
	10.10.2.1. Overriding Rules

	10.10.3. Deployer’s Responsibility
	10.10.4. Container Provider Responsibility
	10.10.5. System Administrator’s Responsibility

	10.11. Persistence Context References
	10.11.1. Bean Provider’s Responsibilities
	10.11.1.1. Injection of Persistence Context References
	10.11.1.2. Programming Interfaces for Persistence Context References
	10.11.1.3. Declaration of Persistence Context References in Deployment Descriptor

	10.11.2. Application Assembler’s Responsibilities
	10.11.2.1. Overriding Rules

	10.11.3. Deployer’s Responsibility
	10.11.4. Container Provider Responsibility
	10.11.5. System Administrator’s Responsibility

	10.12. UserTransaction Interface
	10.12.1. Bean Provider’s Responsibility
	10.12.2. Container Provider’s Responsibility

	10.13. ORB References
	10.13.1. Bean Provider’s Responsibility
	10.13.2. Container Provider’s Responsibility

	10.14. TimerService References
	10.14.1. Bean Provider’s Responsibility
	10.14.2. Container Provider’s Responsibility

	10.15. EJBContext References
	10.15.1. Bean Provider’s Responsibility
	10.15.2. Container Provider’s Responsibility

	10.16. Support for Other Resources and Configuration Parameters

	Chapter 11. Security Management
	11.1. Overview
	11.2. Bean Provider’s Responsibilities
	11.2.1. Invocation of Other Enterprise Beans
	11.2.2. Resource Access
	11.2.3. Access of Underlying OS Resources
	11.2.4. Programming Style Recommendations
	11.2.5. Programmatic Access to Caller’s Security Context
	11.2.5.1. Use of getCallerPrincipal
	11.2.5.2. Use of isCallerInRole
	11.2.5.3. Declaration of Security Roles Referenced from the Bean’s Code

	11.3. Responsibilities of the Bean Provider and/or Application Assembler
	11.3.1. Security Roles
	11.3.2. Method Permissions
	11.3.2.1. Specification of Method Permissions with Metadata Annotations
	11.3.2.2. Specification of Method Permissions in the Deployment Descriptor
	11.3.2.3. Unspecified Method Permissions

	11.3.3. Linking Security Role References to Security Roles
	11.3.4. Specification of Security Identities in the Deployment Descriptor
	11.3.4.1. Run-as

	11.4. Deployer’s Responsibilities
	11.4.1. Security Domain and Principal Realm Assignment
	11.4.2. Assignment of Security Roles
	11.4.3. Principal Delegation
	11.4.4. Security Management of Resource Access
	11.4.5. General Notes on Deployment Descriptor Processing

	11.5. Enterprise Beans Client Responsibilities
	11.6. Container Provider’s Responsibilities
	11.6.1. Deployment Tools
	11.6.2. Security Domain(s)
	11.6.3. Security Mechanisms
	11.6.4. Passing Principals on Enterprise Beans Calls
	11.6.5. Security Methods in jakarta.ejb.EJBContext
	11.6.6. Secure Access to Resource Managers
	11.6.7. Principal Mapping
	11.6.8. System Principal
	11.6.9. Runtime Security Enforcement
	11.6.10. Audit Trail

	11.7. System Administrator’s Responsibilities
	11.7.1. Security Domain Administration
	11.7.2. Principal Mapping
	11.7.3. Audit Trail Review

	Chapter 12. Timer Service
	12.1. Overview
	12.2. Bean Provider’s View of the Timer Service
	12.2.1. Calendar-Based Time Expressions
	12.2.1.1. Calendar-Based Time Expression Attributes
	12.2.1.2. Attribute Syntax
	12.2.1.3. Expression Rules
	12.2.1.4. Examples

	12.2.2. Automatic Timer Creation
	12.2.3. Non-persistent Timers
	12.2.4. The TimerService Interface
	12.2.4.1. Example

	12.2.5. Timeout Callback Methods
	12.2.5.1. Timeout Callbacks for Programmatic Timers
	12.2.5.2. Timeout Callbacks for Automatically Created Timers
	12.2.5.3. Timeout Callback Method Requirements

	12.2.6. The Timer and TimerHandle Interfaces
	12.2.7. Timer Identity
	12.2.8. Transactions

	12.3. Bean Provider’s Responsibilities
	12.3.1. Enterprise Bean Class
	12.3.2. TimerHandle

	12.4. Container’s Responsibilities
	12.4.1. TimerService, Timer, and TimerHandle Interfaces
	12.4.2. Automatic Timers
	12.4.3. Timer Expiration and Timeout Callback Method
	12.4.4. Timer Cancellation

	Chapter 13. Deployment Descriptor
	13.1. Overview
	13.2. Bean Provider’s Responsibilities
	13.3. Application Assembler’s Responsibility
	13.4. Container Provider’s Responsibilities
	13.5. Deployment Descriptor XML Schema

	Chapter 14. Packaging
	14.1. Overview
	14.2. Deployment Descriptor
	14.3. Packaging Requirements
	14.4. Enterprise Beans Packaged in a .war file
	14.4.1. Class Loading
	14.4.2. Component Environment
	14.4.3. Visibility of the Local Client View
	14.4.4. Ejb-names
	14.4.5. Example

	14.5. Deployment Descriptor and Annotation Processing
	14.5.1. Ejb-jar Deployment Descriptor and Annotation Processing
	14.5.2. .war Deployment Descriptor and Annotation Processing

	14.6. The Client View and the ejb-client JAR File
	14.7. Requirements for Clients
	14.8. Example

	Chapter 15. Runtime Environment
	15.1. Enterprise Beans Lite and Other Enterprise Beans API Groups
	15.1.1. Support for Other Enterprise Beans API Groups in an Enterprise Beans Lite Container
	15.1.2. Integration with Other Technologies

	15.2. Bean Provider’s Responsibilities
	15.2.1. APIs Provided by Container
	15.2.2. Programming Restrictions

	15.3. Container Provider’s Responsibility
	15.3.1. Enterprise Beans Interfaces and Annotations Requirements
	15.3.2. JNDI Requirements
	15.3.3. Jakarta Transactions API Requirements
	15.3.4. JDBC™ API Requirements
	15.3.5. Jakarta Messaging API Requirements
	15.3.6. Argument Passing Semantics
	15.3.7. Other Requirements

	Chapter 16. Compatibility and Migration
	16.1. Support for Existing Applications
	16.2. Default Stateful Session Bean Concurrency Behavior
	16.3. Default Application Exception Subclassing Behavior
	16.4. Interoperability of Enterprise Beans 3.2 and Earlier Components
	16.4.1. Clients written to the Enterprise Beans 2.x APIs
	16.4.2. Clients written to the Enterprise Beans 3.x API
	16.4.3. Combined use of Enterprise Beans 2.x and Enterprise Beans 3.x persistence APIs

	16.5. Adapting Enterprise Beans 3.x Session Beans to Earlier Client Views
	16.5.1. Stateless Session Beans
	16.5.2. Stateful Session Beans

	Chapter 17. Embeddable Usage
	17.1. Overview
	17.2. Bootstrapping API
	17.2.1. EJBContainer
	17.2.2. Standard Initialization Properties
	17.2.2.1. jakarta.ejb.embeddable.provider
	17.2.2.2. jakarta.ejb.embeddable.modules
	17.2.2.3. jakarta.ejb.embeddable.appName

	17.2.3. Looking Up Session Bean References
	17.2.4. Embeddable Container Shutdown

	17.3. Embeddable Container Provider’s Responsibilities
	17.3.1. Runtime Environment
	17.3.2. Naming Lookups
	17.3.3. Embeddable Container Bootstrapping
	17.3.4. Concrete jakarta.ejb.embeddable.EJBContainer Implementation Class

	Chapter 18. Responsibilities of Enterprise Beans Roles
	18.1. Bean Provider’s Responsibilities
	18.1.1. API Requirements
	18.1.2. Packaging Requirements

	18.2. Application Assembler’s Responsibilities
	18.3. Container Provider’s Responsibilities
	18.4. Deployer’s Responsibilities
	18.5. System Administrator’s Responsibilities
	18.6. Client Programmer’s Responsibilities

	Related Documents
	Appendix A: Revision History
	A.1. Public Draft
	A.2. Final Release Candidate
	A.3. Final Release

